On Bogolyubov's ``Edge-of-the-Wedge'' Theorem
Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 24-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

A “one-sided” version of N. Bogolyubov's “edge-of-the-wedge” theorem is considered. The proof is based upon classical ideas and results of R. Nevanlinna and T. Carleman related to the concept of harmonic measure.
@article{TRSPY_2000_228_a2,
     author = {A. A. Gonchar},
     title = {On {Bogolyubov's} {``Edge-of-the-Wedge''} {Theorem}},
     journal = {Informatics and Automation},
     pages = {24--31},
     publisher = {mathdoc},
     volume = {228},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a2/}
}
TY  - JOUR
AU  - A. A. Gonchar
TI  - On Bogolyubov's ``Edge-of-the-Wedge'' Theorem
JO  - Informatics and Automation
PY  - 2000
SP  - 24
EP  - 31
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a2/
LA  - ru
ID  - TRSPY_2000_228_a2
ER  - 
%0 Journal Article
%A A. A. Gonchar
%T On Bogolyubov's ``Edge-of-the-Wedge'' Theorem
%J Informatics and Automation
%D 2000
%P 24-31
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a2/
%G ru
%F TRSPY_2000_228_a2
A. A. Gonchar. On Bogolyubov's ``Edge-of-the-Wedge'' Theorem. Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 24-31. http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a2/

[1] Bogolyubov N. N., Medvedev B. V., Polivanov M. K., Voprosy teorii dispersionnykh sootnoshenii, Fizmatgiz, M., 1958 | MR

[2] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR

[3] Vladimirov V. S., “Teorema Bogolyubova “ostrie klina”, ee razvitie i prilozheniya”, Problemy teoreticheskoi fiziki, Nauka, M., 1969, 61–67

[4] Vladimirov V. S., “Funktsii neskolkikh kompleksnykh peremennykh v matematicheskoi fizike”, Problemy matematiki i mekhaniki, Nauka, Novosibirsk, 1983, 15–32

[5] Beurling A., “Analytic continuation across a linear boundary”, Acta math., 128 (1972), 153–182 | DOI | MR | Zbl

[6] Epstein H., “Generalization of the “edge of the wedge” theorem”, J. Math. Phys., 1 (1960), 524–531 | DOI | MR | Zbl

[7] Epstein H., “Some analytic properties of scattering amplitudes in quantum field theory”, Particle symmetries and axiomatic field theory. v. 1: Axiomatic field theory (Brandeis Univ. Summer Inst. Theor. Phys., 1965), eds. M. Chretien, S. Deser, Gordon and Breach, N. Y. etc., 1966, 1–133 | MR

[8] Gonchar A. A., “On analytic continuation from the “edge of the wedge””, Ann. Acad. Sci. Fenn. Ser. A I Mathematica, 10 (1985), 221–225 | MR | Zbl

[9] Martineau A., “Le “edge of the wedge theorem” en theorie des hyperfonctions de Sato”, Proc. Intern. Conf. Funct. Anal. and Rel. Top. (Tokio, 1969), Univ. Tokio Press, Tokio, 1970, 95–106 | MR

[10] Rudin W., Lectures on the edge-of-the-wedge theorem, Amer. Math. Soc., Providence, R.I., 1971, Reg. Conf. Ser. Math., v. 6 | MR

[11] Siciak J., “Separately analytic functions and envelopes of holomorphy of some lower dimensional subsets of $\mathbb C^n$”, Ann. Polon. Math., 22 (1969–1970), 140–171 | MR