The Hartree--Fock--Bogolyubov Approximation in the Models with Four-Fermion Interaction
Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 264-285.

Voir la notice de l'article provenant de la source Math-Net.Ru

An exactly solvable model with pairwise four-fermion interaction is considered, which is of interest in the theory of superconductivity. It is shown that one can construct an asymptotically exact solution for this model by using the method of approximating Hamiltonians. A theorem is proved that allows one to calculate, with asymptotic accuracy in the thermodynamic limit, the density of free energy under sufficiently general conditions imposed on the parameters of a model system. An approximate method is proposed for the investigation of general models with four-fermion interaction. This method is based on the idea of constructing a certain approximating Hamiltonian and allows one to investigate the dynamic properties of the above models. It combines the approach, conventional for the method of approximating Hamiltonians, to the investigation of models with separable interaction and the Hartree–Fock scheme of approximate calculations that is based on the concept of self-consistency. As an illustration of the efficiency of the approach proposed, the BCS model is considered, which plays an important role in the theory of superconductivity.
@article{TRSPY_2000_228_a19,
     author = {N. N. Bogolyubov (Jr.)},
     title = {The {Hartree--Fock--Bogolyubov} {Approximation} in the {Models} with {Four-Fermion} {Interaction}},
     journal = {Informatics and Automation},
     pages = {264--285},
     publisher = {mathdoc},
     volume = {228},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a19/}
}
TY  - JOUR
AU  - N. N. Bogolyubov (Jr.)
TI  - The Hartree--Fock--Bogolyubov Approximation in the Models with Four-Fermion Interaction
JO  - Informatics and Automation
PY  - 2000
SP  - 264
EP  - 285
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a19/
LA  - ru
ID  - TRSPY_2000_228_a19
ER  - 
%0 Journal Article
%A N. N. Bogolyubov (Jr.)
%T The Hartree--Fock--Bogolyubov Approximation in the Models with Four-Fermion Interaction
%J Informatics and Automation
%D 2000
%P 264-285
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a19/
%G ru
%F TRSPY_2000_228_a19
N. N. Bogolyubov (Jr.). The Hartree--Fock--Bogolyubov Approximation in the Models with Four-Fermion Interaction. Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 264-285. http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a19/

[1] Bogolyubov N. N., Zubarev D. N., Tserkovnikov Yu. A., “K teorii fazovogo perekhoda”, DAN SSSR, 117 (1957), 788–791

[2] Bogolyubov N. N., Zubarev D. N., Tserkovnikov Yu. A., “Asimptoticheski tochnoe reshenie dlya modelnogo gamiltoniana teorii sverkhprovodimosti”, ZhETF, 39:1 (1960), 120–129 | MR

[3] Bogolyubov N. N., K voprosu o modelnom gamiltoniane v teorii sverkhprovodimosti, Preprint OIYaI, P-511, Dubna, 1960 | MR

[4] Bogolubov N. N., Jr., “On model dynamical systems in statistical mechanics”, Physica, 32 (1966), 933–944 ; Bogolubov N. N., Jr., Method for studying model Hamiltonians, Pergamon Press, Oxford, 1972 | DOI | MR

[5] Bogolyubov N. N. (ml.), “Postroenie predelnykh sootnoshenii dlya mnogovremennykh srednikh”, TMF, 4:3 (1970), 412–419 | MR | Zbl

[6] Bardeen J., Cooper L. N., Schrieffer J. R., “Theory of superconductivity”, Phys. Rev., 108 (1957), 1175–1204 | DOI | MR | Zbl

[7] Bogolyubov N. N., Tolmachev V. V., Shirkov D. V., Novyi metod v teorii sverkhprovodimosti, Izd-vo AN SSSR, M., 1958; Bogolubov N. N., Tolmachev V. V., Shirkov D. V., A new method in the theory of superconductivity, Consultants Bureau, N. Y., 1959 | MR

[8] Hertel P., Thirring W., “Free energy of gravitating fermions”, Commun. Math. Phys., 24 (1971), 22–36 | DOI | MR | Zbl

[9] Bogolyubov N. N. (ml.), Petrina D. Ya., “Ob odnom klasse modelnykh sistem, dopuskayuschikh ponizhenie stepeni gamiltoniana v termodinamicheskom predele, I”, TMF, 33:2 (1977), 231–245 | MR

[10] Bogolubov N. N., Jr., Soldatov A. V., “Hartree–Fock–Bogolubov approximation in the models with general four-fermion interaction”, Intern. J. Mod. Phys. B, 10:5–6 (1996), 579–597 | DOI | MR

[11] Bogolyubov N. N., Bogolyubov N. N. (ml.), Vvedenie v kvantovuyu statisticheskuyu mekhaniku, Nauka, M., 1984, 92–104 ; Bogolubov N. N., Bogolubov N. N., Jr., An introduction to quantum statistical mechanics, Gordon and Breach, N. Y., 1994 | MR | MR | Zbl