The Complex-Germ Method for Statistical Mechanics of Model Systems
Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 246-263.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a special (“semiclassical”) class of Hamiltonian operators in the Fock space. This class involves the superconductivity BCS model, as well as the lattice magnetic Hamiltonians. It is shown that the commutator of two observables from this class is proportional to a small parameter. For each observable of this type, one can introduce a function on the phase space which corresponds to the observable. The Poisson bracket between two functions is defined. Two approaches are developed for investigating the Schrödinger equation with the Hamiltonian of the class under consideration. One of them is based on the Ehrenfest theorem, and another is based on the substitution of the hypothetical asymptotic solution to the equation. We construct the “semiclassical” states obeying the following property: in the “semiclassical” limit, the average values of “semiclassical” observables in such states coincide with the values of the corresponding functions at a certain point of the classical phase space. The asymptotics constructed can be interpreted in terms of the complex-germ theory.
@article{TRSPY_2000_228_a18,
     author = {V. P. Maslov and O. Yu. Shvedov},
     title = {The {Complex-Germ} {Method} for {Statistical} {Mechanics} of {Model} {Systems}},
     journal = {Informatics and Automation},
     pages = {246--263},
     publisher = {mathdoc},
     volume = {228},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a18/}
}
TY  - JOUR
AU  - V. P. Maslov
AU  - O. Yu. Shvedov
TI  - The Complex-Germ Method for Statistical Mechanics of Model Systems
JO  - Informatics and Automation
PY  - 2000
SP  - 246
EP  - 263
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a18/
LA  - ru
ID  - TRSPY_2000_228_a18
ER  - 
%0 Journal Article
%A V. P. Maslov
%A O. Yu. Shvedov
%T The Complex-Germ Method for Statistical Mechanics of Model Systems
%J Informatics and Automation
%D 2000
%P 246-263
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a18/
%G ru
%F TRSPY_2000_228_a18
V. P. Maslov; O. Yu. Shvedov. The Complex-Germ Method for Statistical Mechanics of Model Systems. Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 246-263. http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a18/

[1] Maslov V. P., Shvedov O. Yu., “Metod kompleksnogo rostka v prostranstve Foka. I: Asimptotika tipa volnovykh paketov”, TMF, 104:2 (1995), 310–329 | MR | Zbl

[2] Maslov V. P., Shvedov O. Yu., “Metod kompleksnogo rostka v prostranstve Foka. II: Asimptotiki, otvechayuschie konechnomernym izotropnym mnogoobraziyam”, TMF, 104:3 (1995), 479–506 | MR | Zbl

[3] Bogolyubov N. N., Zubarev D. V., Tserkovnikov Yu. A., “K teorii fazovogo perekhoda”, DAN SSSR, 117:5 (1957), 788–791

[4] Akhiezer A. I., Baryakhtar V. G., Peletminskii S. V., Spinovye volny, Nauka, M., 1967

[5] Tyablikov S. V., Metody kvantovoi teorii magnetizma, Nauka, M., 1965 | MR

[6] Bogolyubov N. N., Sadovnikov B. I., Shumovskii A. S., Matematicheskie metody statisticheskoi mekhaniki modelnykh sistem, Nauka, M., 1989 | MR

[7] Maslov V. P., Operatornye metody, Nauka, M., 1973 | MR

[8] Berezin F. A., “General concept of quantization”, Commun. Math. Phys., 40 (1975), 153–174 | DOI | MR

[9] Karasev M. V., Maslov V. P., Nelineinaya skobka Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | Zbl

[10] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | MR | Zbl

[11] Maslov V. P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR

[12] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo MGU, M., 1965

[13] Maslov V. P., Shvedov O. Yu., “On the approximation for the quantum large canonical distribution”, Russ. J. Math. Phys., 6:1 (1998), 80–89 | MR

[14] Maslov V. P., Shvedov O. Yu., “Ob asimptotike matritsy plotnosti sistemy bolshogo chisla tozhdestvennykh chastits”, Mat. zametki, 65:1 (1999), 84–106 | MR | Zbl

[15] Berezin F. A., “Models of Gross–Neveu type are quantization of a classical mechanics with nonlinear phase space”, Commun. Math. Phys., 63 (1978), 131–153 | DOI | MR | Zbl

[16] Maslov V. P., Shvedov O. Yu., “O probleme raskhodimosti v kvantovoi teorii polya”, Dokl. RAN, 357:5 (1997), 604–608 | MR | Zbl

[17] Shvedov O. Yu., “O kanonicheskom operatore Maslova v abstraktnykh prostranstvakh”, Mat. zametki, 65:3 (1999), 437–456 | MR | Zbl

[18] Shvedov O. Yu., “O kompleksnom rostke Maslova v abstraktnykh prostranstvakh”, Mat. sb., 190:10 (1999), 123–157 | MR | Zbl

[19] Haag R., “The mathematical structure of the Bardeen–Cooper–Schrieffer model”, Nuovo Cim., 25 (1962), 287–299 | DOI | MR | Zbl

[20] Emkh Zh., Algebraicheskie metody v statisticheskoi mekhanike i kvantovoi teorii polya, Mir, M., 1976