Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2000_228_a17, author = {V. Y. Kaloshin and Ya. G. Sinai}, title = {Simple {Random} {Walks} along {Orbits} of {Anosov} {Diffeomorphisms}}, journal = {Informatics and Automation}, pages = {236--245}, publisher = {mathdoc}, volume = {228}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a17/} }
V. Y. Kaloshin; Ya. G. Sinai. Simple Random Walks along Orbits of Anosov Diffeomorphisms. Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 236-245. http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a17/
[1] Bowen R., Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lect. Notes Math., 470, Springer-Verl., Berlin–New York, 1975 | MR | Zbl
[2] Billingsley P., Convergence of probability measures, Wiley, N. Y., 1968 | MR | Zbl
[3] Golosov A., “Localization of random walks in one-dimensional random environment”, Commun. Math. Phys., 92 (1984), 491–506 | DOI | MR | Zbl
[4] Feller W., Introduction to probability theory and its application, v. 2, Wiley, New York–London, 1966 | MR | Zbl
[5] Kesten H., “The limit distribution of Sinai's random walk in a random environment”, Physica A, 138 (1986), 299–306 | DOI | MR
[6] Kaloshin V., Sinai Ya., “Nonsymmetric random walks along orbits of ergodic automorphisms”, On Dobrushin's way. From probability theory to statistical physics, Amer. Math. Soc. Transl., 198, Amer. Math. Soc., Providence, R.I., 2000, 109–115 | MR | Zbl
[7] Sinai Ya. G., “Predelnoe povedenie odnomernogo sluchainogo bluzhdaniya v sluchainoi srede”, Teoriya veryatn. i ee prim., 27 (1982), 247–258 | MR
[8] Sinai Ya., “Simple random walks on tori”, J. Stat. Phys., 94:3–4 (1999), 695–708 | DOI | MR | Zbl
[9] Sinai Ya., Topics in ergodic theory, Princeton Math. Ser., 44 \end {thebibliography}, Princeton Univ. Press, Princeton, N.J., 1994 | MR | Zbl