The Information Manifold for Relatively Bounded Potentials
Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 217-235

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a Banach manifold of states, which are Gibbs states for potentials that are form-bounded relative to the free Hamiltonian. We construct the $(+1)$-affine structure and the $(+1)$-connection.
@article{TRSPY_2000_228_a16,
     author = {R. F. Streater},
     title = {The {Information} {Manifold} for {Relatively} {Bounded} {Potentials}},
     journal = {Informatics and Automation},
     pages = {217--235},
     publisher = {mathdoc},
     volume = {228},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a16/}
}
TY  - JOUR
AU  - R. F. Streater
TI  - The Information Manifold for Relatively Bounded Potentials
JO  - Informatics and Automation
PY  - 2000
SP  - 217
EP  - 235
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a16/
LA  - en
ID  - TRSPY_2000_228_a16
ER  - 
%0 Journal Article
%A R. F. Streater
%T The Information Manifold for Relatively Bounded Potentials
%J Informatics and Automation
%D 2000
%P 217-235
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a16/
%G en
%F TRSPY_2000_228_a16
R. F. Streater. The Information Manifold for Relatively Bounded Potentials. Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 217-235. http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a16/