Asymptotic Time Evolution of a~Partitioned Infinite Two-sided Isotropic $XY$-chain
Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 203-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

The system under consideration is that of a two-sided infinite isotropic $XY$-chain partitioned into two distinct regions. Each side is initially in thermal equilibrium. We investigate the situation when the partition is removed at time $t=0$. For $t\rightarrow\infty the system approaches thermal equilibrium if the two sides were at the same temperature. If initially the two sides were at different temperatures then the system approaches a steady state.
@article{TRSPY_2000_228_a15,
     author = {T. G. Ho and H. Araki},
     title = {Asymptotic {Time} {Evolution} of {a~Partitioned} {Infinite} {Two-sided} {Isotropic} $XY$-chain},
     journal = {Informatics and Automation},
     pages = {203--216},
     publisher = {mathdoc},
     volume = {228},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a15/}
}
TY  - JOUR
AU  - T. G. Ho
AU  - H. Araki
TI  - Asymptotic Time Evolution of a~Partitioned Infinite Two-sided Isotropic $XY$-chain
JO  - Informatics and Automation
PY  - 2000
SP  - 203
EP  - 216
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a15/
LA  - en
ID  - TRSPY_2000_228_a15
ER  - 
%0 Journal Article
%A T. G. Ho
%A H. Araki
%T Asymptotic Time Evolution of a~Partitioned Infinite Two-sided Isotropic $XY$-chain
%J Informatics and Automation
%D 2000
%P 203-216
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a15/
%G en
%F TRSPY_2000_228_a15
T. G. Ho; H. Araki. Asymptotic Time Evolution of a~Partitioned Infinite Two-sided Isotropic $XY$-chain. Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 203-216. http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a15/

[1] Araki H., “On uniqueness of KMS states of one-dimensional quantum lattice systems”, Comm. Math. Phys., 44 (1975), 1–7 | DOI | MR | Zbl

[2] Araki H., “On the $XY$-model on two-sided infinite chain”, Publ. RIMS Kyoto, 20 (1984), 277–296 | DOI | MR | Zbl

[3] Araki H., Barouch E., “On the dynamics and ergodic properties of the $XY$ model”, J. Stat. Phys., 31 (1983), 327–345 | DOI | MR | Zbl

[4] Davies E. B., Quantum theory of open systems, Acad. Press, London, 1976 | MR

[5] Emch G. G., Radin C., “Relaxation of local deviations from equilibrium”, J. Math. Phys., 12 (1971), 2043–2046 | DOI | MR | Zbl

[6] Ho T. G., Landau L. J., Wilkins A. J., “On the weak coupling limit for a Fermi gas in a random potential”, Rev. Math. Phys., 5 (1993), 209–298 | DOI | MR | Zbl

[7] Hume L., Robinson D. W., “Return to equilibrium in the $XY$ model”, J. Stat. Phys., 44 (1986), 829–848 | DOI | MR | Zbl

[8] Olver F. W. J., “Error bounds for stationary phase approximations”, SIAM J. Math. Anal., 5 (1974), 19–29 | DOI | MR | Zbl

[9] Spohn H., Lebowitz J. L., Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs, Adv. Chem. Phys., 38, ed. S. A. Rice, Wiley, N. Y., 1978

[10] Wong R., Asymptotic approximations of integrals, Acad. Press, New York–London, 1989 | MR | Zbl