Global Solutions in Gravity. Lorentzian Signature
Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 168-195

Voir la notice de l'article provenant de la source Math-Net.Ru

A constructive method of conformal blocks is developed for the construction of global solutions for two-dimensional metrics having one Killing vector. The method is proved to yield a smooth universal covering space with a smooth pseudo-Riemannian metric. The Schwarzschild, Reisner–Nordström solutions, extremal black hole, dilaton black hole, and constant curvature surfaces are considered as examples.
@article{TRSPY_2000_228_a13,
     author = {M. O. Katanaev},
     title = {Global {Solutions} in {Gravity.} {Lorentzian} {Signature}},
     journal = {Informatics and Automation},
     pages = {168--195},
     publisher = {mathdoc},
     volume = {228},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a13/}
}
TY  - JOUR
AU  - M. O. Katanaev
TI  - Global Solutions in Gravity. Lorentzian Signature
JO  - Informatics and Automation
PY  - 2000
SP  - 168
EP  - 195
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a13/
LA  - ru
ID  - TRSPY_2000_228_a13
ER  - 
%0 Journal Article
%A M. O. Katanaev
%T Global Solutions in Gravity. Lorentzian Signature
%J Informatics and Automation
%D 2000
%P 168-195
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a13/
%G ru
%F TRSPY_2000_228_a13
M. O. Katanaev. Global Solutions in Gravity. Lorentzian Signature. Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 168-195. http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a13/