Conformal Theories,~BRST Formalism and Representations of the Lie Superalgebras
Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 155-167.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results in the theory of representations of the Lie superalgebras are discussed which were obtained in the framework of a variant of the quantum BRST formalism developed by the authors. The central object of the study in this variant is the complete algebra $\mathcal A$ of the BRST symmetry which coincides with the Lie superalgebra $l(1,1)$. The set of these results presents a nearly complete description of the theory of representations of $\mathcal A$. For infinite-dimensional representations, the criteria characterizing physical representations are established and a class of representations of $\mathcal A$ by unbounded operators in Krein spaces is constructed which is sufficiently large for all physical applications; all the problems concerning the operator domains are rigorously taken into account. For finite-dimensional representations, the complete solution of the decomposition problem is presented. All the series of irreducible and indecomposable representations of $\mathcal A$ are explicitly described and all cases which do not admit any decomposition over these series are singled out and reduced to definite unsolvable algebraic problems.
@article{TRSPY_2000_228_a12,
     author = {A. V. Voronin and S. S. Horuzhy},
     title = {Conformal {Theories,~BRST} {Formalism} and {Representations} of the {Lie} {Superalgebras}},
     journal = {Informatics and Automation},
     pages = {155--167},
     publisher = {mathdoc},
     volume = {228},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a12/}
}
TY  - JOUR
AU  - A. V. Voronin
AU  - S. S. Horuzhy
TI  - Conformal Theories,~BRST Formalism and Representations of the Lie Superalgebras
JO  - Informatics and Automation
PY  - 2000
SP  - 155
EP  - 167
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a12/
LA  - ru
ID  - TRSPY_2000_228_a12
ER  - 
%0 Journal Article
%A A. V. Voronin
%A S. S. Horuzhy
%T Conformal Theories,~BRST Formalism and Representations of the Lie Superalgebras
%J Informatics and Automation
%D 2000
%P 155-167
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a12/
%G ru
%F TRSPY_2000_228_a12
A. V. Voronin; S. S. Horuzhy. Conformal Theories,~BRST Formalism and Representations of the Lie Superalgebras. Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 155-167. http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a12/

[1] Henneaux M., “BRST symmetry in the classical and quantum theories of gauge systems”, Quantum mechanics of fundamental systems, 1 (Santiago, 1985), Ser. Cent. Estud. Cient. Santiago, Plenum, New York, 1988, 117–144 | MR

[2] Felder G., “BRST approach to minimal models”, Nucl. Phys. B, 317 (1989), 215–236 | DOI | MR

[3] Dotsenko Vl. S., Fateev V. A., “Conformal algebra and multipoint correlation functions in $\operatorname{2D}$ statistical models”, Nucl. Phys. B, 240 (1984), 312–348 | DOI | MR

[4] Bernard D., Felder G., “Fock representations and BRST cohomology in $\operatorname{SL}(2)$ current algebra”, Commun. Math. Phys., 127 (1990), 145–168 | DOI | MR | Zbl

[5] Itoh K., Ohta N., “BRST cohomology and physical states in two-dimensional supergravity coupled to $c\leqslant 1$ matter”, Nucl. Phys. B, 377 (1992), 113–142 | DOI | MR

[6] Voronin A. V., Khoruzhii S. S., “Istinnaya algebra BRST simmetrii i teoriya ee predstavlenii”, TMF, 91 (1992), 3–16 | MR

[7] Horuzhy S. S., Voronin A. V., “BRST and $l(1,1)$”, Rev. Math. Phys., 5 (1993), 191–208 | DOI | MR | Zbl

[8] Horuzhy S. S., Voronin A. V., “A new approach to BRST operator cohomologies: exact results for BRST–Fock theories”, TMF, 93 (1992), 342–353 | MR | Zbl

[9] Voronin A. V., Khoruzhii S. S., “BRST kvantovanie kak zadacha teorii predstavlenii superalgebr Li”, Tr. MIAN, 203, 1994, 48–57 | MR | Zbl

[10] Kac V. G., “Lie superalgebras”, Adv. Math., 26 (1977), 8–96 | DOI | MR | Zbl

[11] Horuzhy S. S., Voronin A. V., “Remarks on mathematical structure of BRST theories”, Commun. Math. Phys., 123 (1989), 677–685 | DOI | MR | Zbl

[12] Horuzhy S. S., Voronin A. V., “Representations of the BRST algebra and unsolvable algebraic problems”, J. Math. Phys., 38 (1997), 4301–4322 | DOI | MR | Zbl

[13] Gelfand I. M., Ponomarev V. A., “Nerazlozhimye predstavleniya gruppy Lorentsa”, UMN, 23:2 (1968), 3–59 | MR | Zbl

[14] Gelfand I. M., Ponomarev V. A., “Zamechaniya o klassifikatsii pary kommutiruyuschikh lineinykh preobrazovanii v konechnomernom prostranstve”, Funkts. analiz i ego pril., 3:4 (1969), 81–82 | MR