Invariant Description of Local Symmetries
Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 145-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

A procedure is proposed for finding local symmetries for the models with a given Lagrange function. The objects obtained by this procedure (in particular, the first- and second-class constraints) are described in terms of the invariant language of symplectic geometry. The one-to-one correspondence between the Lagrangian and Hamiltonian local coordinates is demonstrated.
@article{TRSPY_2000_228_a11,
     author = {V. P. Pavlov},
     title = {Invariant {Description} of {Local} {Symmetries}},
     journal = {Informatics and Automation},
     pages = {145--154},
     publisher = {mathdoc},
     volume = {228},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a11/}
}
TY  - JOUR
AU  - V. P. Pavlov
TI  - Invariant Description of Local Symmetries
JO  - Informatics and Automation
PY  - 2000
SP  - 145
EP  - 154
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a11/
LA  - ru
ID  - TRSPY_2000_228_a11
ER  - 
%0 Journal Article
%A V. P. Pavlov
%T Invariant Description of Local Symmetries
%J Informatics and Automation
%D 2000
%P 145-154
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a11/
%G ru
%F TRSPY_2000_228_a11
V. P. Pavlov. Invariant Description of Local Symmetries. Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 145-154. http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a11/

[1] Pavlov V. P., “Skobka Diraka”, TMF, 92:3 (1992), 451–456 | MR | Zbl

[2] Battle C., Gomis J., Pons J. M., Roman N., “Connection between Lagrangean Hamiltonian formulations of Dirac constrainted mechanics”, J. Math. Phys., 28 (1987), 1117–1129

[3] Pavlov V. P., Starinets A. O., “Geometriya fazovogo prostranstva dlya sistem so svyazyami”, TMF, 105:3 (1995), 429–437 | MR | Zbl

[4] Gitman D. M., Tyutin I. V., Kanonicheskoe kvantovanie sistem so svyazyami, Nauka, M., 1986 | MR | Zbl

[5] Faddeev L. D., “Integral Feinmana dlya singulyarnykh lagranzhianov”, TMF, 1:1 (1969), 3–18 | MR | Zbl