Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2000_228_a10, author = {O. I. Zavialov}, title = {Relativistic {Wigner} {Function} and {Nonlinear} {Representations} of the {Lorentz} {Group}}, journal = {Informatics and Automation}, pages = {136--144}, publisher = {mathdoc}, volume = {228}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a10/} }
O. I. Zavialov. Relativistic Wigner Function and Nonlinear Representations of the Lorentz Group. Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 136-144. http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a10/
[1] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1973 | MR | Zbl
[2] Wigner E., “On the quantum correction for thermodynamic equilibrium”, Phys. Rev., 40 (1932), 749–759 | DOI
[3] Shirokov Yu. M., “Teoriya vozmuschenii po postoyannoi Planka”, TMF, 31 (1977), 327–332
[4] Shirokov Yu. M., “Edinyi formalizm dlya kvantovoi i klassicheskoi teorii rasseyaniya”, TMF, 38 (1979), 313–320 | MR
[5] Tatarskii V. I., “Vignerovskoe predstavlenie kvantovoi mekhaniki”, UFN, 139 (1983), 587–619 | MR
[6] Zavyalov O. I., Malokostov A. M., “Funktsiya Vignera dlya svobodnykh relyativistskikh chastits”, TMF, 119:1 (1999), 67–72
[7] Newton T., Wigner E., “On the coordinate operator in relativistic quantum mechanics”, Rev. Mod. Phys., 21 (1949), 400–410 | DOI