Relativistic Wigner Function and Nonlinear Representations of the Lorentz Group
Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 136-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization of the Wigner Function for the case of particles with relativistic Hamiltonian $H(\mathbf p)=\sqrt{\mathbf p^2+m^2}$ is given; the transformation properties of the wave functions with respect to the Lorentz group are discussed.
@article{TRSPY_2000_228_a10,
     author = {O. I. Zavialov},
     title = {Relativistic {Wigner} {Function} and {Nonlinear} {Representations} of the {Lorentz} {Group}},
     journal = {Informatics and Automation},
     pages = {136--144},
     publisher = {mathdoc},
     volume = {228},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a10/}
}
TY  - JOUR
AU  - O. I. Zavialov
TI  - Relativistic Wigner Function and Nonlinear Representations of the Lorentz Group
JO  - Informatics and Automation
PY  - 2000
SP  - 136
EP  - 144
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a10/
LA  - ru
ID  - TRSPY_2000_228_a10
ER  - 
%0 Journal Article
%A O. I. Zavialov
%T Relativistic Wigner Function and Nonlinear Representations of the Lorentz Group
%J Informatics and Automation
%D 2000
%P 136-144
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a10/
%G ru
%F TRSPY_2000_228_a10
O. I. Zavialov. Relativistic Wigner Function and Nonlinear Representations of the Lorentz Group. Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 136-144. http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a10/

[1] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1973 | MR | Zbl

[2] Wigner E., “On the quantum correction for thermodynamic equilibrium”, Phys. Rev., 40 (1932), 749–759 | DOI

[3] Shirokov Yu. M., “Teoriya vozmuschenii po postoyannoi Planka”, TMF, 31 (1977), 327–332

[4] Shirokov Yu. M., “Edinyi formalizm dlya kvantovoi i klassicheskoi teorii rasseyaniya”, TMF, 38 (1979), 313–320 | MR

[5] Tatarskii V. I., “Vignerovskoe predstavlenie kvantovoi mekhaniki”, UFN, 139 (1983), 587–619 | MR

[6] Zavyalov O. I., Malokostov A. M., “Funktsiya Vignera dlya svobodnykh relyativistskikh chastits”, TMF, 119:1 (1999), 67–72

[7] Newton T., Wigner E., “On the coordinate operator in relativistic quantum mechanics”, Rev. Mod. Phys., 21 (1949), 400–410 | DOI