Nikolai Nikolaevich Bogolyubov and Mathematics
Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 7-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper gives an account of the role of mathematics in the scientific activity of N. N. Bogolyubov, the development of the axiomatic approach in quantum field theory and many applications of this approach, as well as the works by Bogolyubov in other important problems of theoretical and mathematical physics, including his participation in the development of the first samples of nuclear weapon.
@article{TRSPY_2000_228_a0,
     author = {V. S. Vladimirov},
     title = {Nikolai {Nikolaevich} {Bogolyubov} and {Mathematics}},
     journal = {Informatics and Automation},
     pages = {7--16},
     publisher = {mathdoc},
     volume = {228},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a0/}
}
TY  - JOUR
AU  - V. S. Vladimirov
TI  - Nikolai Nikolaevich Bogolyubov and Mathematics
JO  - Informatics and Automation
PY  - 2000
SP  - 7
EP  - 16
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a0/
LA  - ru
ID  - TRSPY_2000_228_a0
ER  - 
%0 Journal Article
%A V. S. Vladimirov
%T Nikolai Nikolaevich Bogolyubov and Mathematics
%J Informatics and Automation
%D 2000
%P 7-16
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a0/
%G ru
%F TRSPY_2000_228_a0
V. S. Vladimirov. Nikolai Nikolaevich Bogolyubov and Mathematics. Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 7-16. http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a0/

[1] Bogoliubov N. N., Selected Works in four parts. Pt I: Dynamical theory, Gordon and Breach, London, 1990; Pt II: Quantum and classical statistical mechanics, 1991 ; Pt III: Nonlinear mechanics and pure mathematics, 1995; Pt IV: Quantum field theory, 1995 | Zbl

[2] Bogoliubov N. N., “Sur quelques méthodes nouvelles dans le calcul des variations”, Ann. mat. pura ed appl., ser. 4, 7 (1929–1930), 249–271 | DOI

[3] Bogolyubov A. N., Bogolyubov N. N., Zhizn. Tvorchestvo, Dubna, 1996

[4] Shirkov D. V., “Vospominaniya o N. N.”, Nikolai Nikolaevich Bogolyubov. Matematik, mekhanik, fizik, Dubna, 1994, 180–197

[5] Bogolyubov N. N., Polivanov M. K., Polya i kvanty. Kvantovaya teoriya polya – nauka ob elementarnykh chastitsakh i ikh vzaimodeistviyakh, Glazami uchenogo, Izd-vo AN SSSR, M., 1963, 158–173

[6] “Vstupitelnoe slovo predsedatelya Orgkomiteta akademika N. N. Bogolyubova”, Tr. VI Mezhdunar. sovesch. po problemam kvantovoi teorii polya (Alushta, mai 1981 g.), OIYaI, Dubna, 1981, 5–6

[7] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Gostekhizdat, M., 1957 | MR

[8] Bogolyubov N. N., Medvedev B. V., Polivanov M. K., Voprosy teorii dispersionnykh sootnoshenii, Gostekhizdat, M., 1958 | MR

[9] Problemy Gilberta, Nauka, M., 1969 | MR

[10] Bremermann H. J., Oehme R., Taylor J. G., “Proof of dispersion relations in quantum field theories”, Phys. Rev., 109:6 (1958), 2178–2190 | DOI | MR | Zbl

[11] Oehme R., “Dispersion relations in gauge theories with confinement”, Quanta, relativity, gravitation (Proc. XVIII Workshop on high energy physics and field theory. Protvino, June 1995), Protvino, 1996, 275–282

[12] Vladimirov V. C., Zharinov V. V., Sergeev A. G., “Teorema ob “ostrie klina” Bogolyubova, ee razvitie i primeneniya”, UMN, 49:5 (1994), 47–60 | MR | Zbl

[13] Bogoliubov N. N., Vladimirov V. S., “On some mathematical problems of quantum field theory”, Proc. Intern. Congr. Math. (Edinburgh, Aug. 1958), Cambridge, 1960, 19–32 | MR

[14] Shirkov D. V., Vladimirov V. S., Logunov A. A., Tavkhelidze A. N., “Teoreticheskie issledovaniya po dispersionnym sootnosheniyam”, Devyataya Mezhdunar. konf. po fizike vysokikh energii (Kiev, iyul 1959 g.), M., 1961, 453–464

[15] Bogolyubov N. N., Vladimirov V. S., Tavkhelidze A. N., “Ob avtomodelnoi asimptotike v kvantovoi teorii polya”, TMF, 12:3 (1972), 305–330 | MR

[16] Vladimirov V. S., Drozhzhinov Yu. N., Zavyalov B. I., Mnogomernye tauberovy teoremy dlya obobschennykh funktsii, Nauka, M., 1986 | MR

[17] Bogolyubov N. N., Vladimirov V. S., “Odna teorema ob analiticheskom prodolzhenii obobschennykh funktsii”, Nauch. dokl. vyssh. shk. Fiz.-mat. nauki, 1958, no. 3, 26–35

[18] Bogolyubov N. N., Vladimirov V. S., “Predstavlenie $n$-tochechnykh funktsii”, Tr. MIAN, 112, 1971, 5–21 | Zbl

[19] Sakharov A. D., Vospominaniya, v 2-kh tomakh, Prava cheloveka, M., 1996