Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_1999_227_a9, author = {G. A. Kalyabin}, title = {Bilateral {Estimates} for the {Least} {Norm} of {Extension} {Operators} from {Plane} {Convex} {Domains} for {Sobolev} {Spaces}}, journal = {Informatics and Automation}, pages = {146--151}, publisher = {mathdoc}, volume = {227}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a9/} }
TY - JOUR AU - G. A. Kalyabin TI - Bilateral Estimates for the Least Norm of Extension Operators from Plane Convex Domains for Sobolev Spaces JO - Informatics and Automation PY - 1999 SP - 146 EP - 151 VL - 227 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a9/ LA - ru ID - TRSPY_1999_227_a9 ER -
G. A. Kalyabin. Bilateral Estimates for the Least Norm of Extension Operators from Plane Convex Domains for Sobolev Spaces. Informatics and Automation, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Tome 227 (1999), pp. 146-151. http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a9/
[1] Mazya V. G., Prostranstva Soboleva, Izd-vo LGU, L., 1985
[2] Mikhlin S. G., Konstanten in einigen Ungleichungen der Analysis, Teubner Texte Math., 35, Teubner, Leipzig, 1981 | MR
[3] Maz'ya V. G., Poborchi S. V., “On extension of functions in Sobolev spaces on parameter dependent domains”, Math. Nachr., 178 (1996), 5–41 | DOI | MR
[4] Kalyabin G. A., “On the least norm estimates of the extension operators from convex plane domains for Sobolev classes $W^1_p$”, Abstr. Intern. Conf. Math. Anal. and Appl. (Linköping (Sweden), June 10–15, 1996)