Criterion of Solvability for Boundary Value Problems for the Laplace and Poisson Equations on Special Triangles and a~Rectangle in Algebraic Polynomials
Informatics and Automation, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Tome 227 (1999), pp. 122-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TRSPY_1999_227_a7,
     author = {E. A. Volkov},
     title = {Criterion of {Solvability} for {Boundary} {Value} {Problems} for the {Laplace} and {Poisson} {Equations} on {Special} {Triangles} and {a~Rectangle} in {Algebraic} {Polynomials}},
     journal = {Informatics and Automation},
     pages = {122--136},
     publisher = {mathdoc},
     volume = {227},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a7/}
}
TY  - JOUR
AU  - E. A. Volkov
TI  - Criterion of Solvability for Boundary Value Problems for the Laplace and Poisson Equations on Special Triangles and a~Rectangle in Algebraic Polynomials
JO  - Informatics and Automation
PY  - 1999
SP  - 122
EP  - 136
VL  - 227
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a7/
LA  - ru
ID  - TRSPY_1999_227_a7
ER  - 
%0 Journal Article
%A E. A. Volkov
%T Criterion of Solvability for Boundary Value Problems for the Laplace and Poisson Equations on Special Triangles and a~Rectangle in Algebraic Polynomials
%J Informatics and Automation
%D 1999
%P 122-136
%V 227
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a7/
%G ru
%F TRSPY_1999_227_a7
E. A. Volkov. Criterion of Solvability for Boundary Value Problems for the Laplace and Poisson Equations on Special Triangles and a~Rectangle in Algebraic Polynomials. Informatics and Automation, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Tome 227 (1999), pp. 122-136. http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a7/

[1] Nikolskii S. M., “Sluchai, kogda reshenie kraevoi zadachi – mnogochlen”, Dokl. RAN, 366:6 (1999), 746–748 | MR

[2] Nikolskii S. M., “Kraevye zadachi dlya mnogochlenov”, Trudy MIAN, 227, 1999, 223–236

[3] Volkov E. A., “O differentsialnykh svoistvakh reshenii kraevykh zadach dlya uravneniya Laplasa na mnogougolnikakh”, Tr. MIAN, 77, 1965, 113–142 | Zbl

[4] Nikolskii S. M., “Granichnye svoistva funktsii, opredelennykh na oblastyakh s uglovymi tochkami”, Mat. sb., 43:1 (1957), 127–144 | MR

[5] Fufaev V. V., “K zadache Dirikhle dlya oblastei s uglami”, DAN SSSR, 131:1 (1960), 37–39 | MR | Zbl

[6] Volkov E. A., “Ob usloviyakh predstavleniya reshenii kraevykh zadach dlya uravnenii Laplasa i Puassona na nekotorykh treugolnikakh i pryamougolnike algebraicheskimi mnogochlenami”, Dokl. RAN, 366:6 (1999), 727–729 | MR | Zbl

[7] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987, 688 pp. | MR

[8] Volkov E. A., “Eksponentsialno skhodyaschiisya metod dlya zadachi Neimana na mnogosvyaznykh mnogougolnikakh”, Tr. MIAN, 172, 1985, 86–106 | Zbl

[9] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1972, 735 pp. | MR

[10] Volkov E. A., “O differentsialnykh svoistvakh reshenii kraevykh zadach dlya uravnenii Laplasa i Puassona na pryamougolnike”, Tr. MIAN, 77, 1965, 89–112 | Zbl

[11] Vlasov V. I., Skorokhodov S. L., “O razvitii metoda Trefftsa”, Dokl. RAN, 337:6 (1994), 713–717 | MR | Zbl