Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_1999_227_a5, author = {V. I. Burenkov and M. L. Gol'dman}, title = {Hardy-Type {Inequalities} for {Moduli} of {Continuity}}, journal = {Informatics and Automation}, pages = {92--108}, publisher = {mathdoc}, volume = {227}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a5/} }
V. I. Burenkov; M. L. Gol'dman. Hardy-Type Inequalities for Moduli of Continuity. Informatics and Automation, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Tome 227 (1999), pp. 92-108. http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a5/
[1] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR
[2] Stepanov V. D., “Vesovye neravenstva Khardi dlya proizvodnykh vysshikh poryadkov”, Tr. MIAN, 187, 1990, 178–190 | Zbl
[3] Yakovlev G. N., “Granichnye svoistva funktsii klassa $W_p^l$ na oblastyakh s uglovymi tochkami”, DAN SSSR, 140:1 (1961), 73–76 | MR | Zbl
[4] Kufner A., Triebel H., “Generalizations of Hardy's inequality”, Conf. Sem. Mat. Univ. Bari, 156 (1978) | MR | Zbl
[5] Heinig H. P., Kufner A., Persson L.-E., “On some fractional order Hardy inequalities”, J. Inequal. and Appl., 1 (1997), 25–46 | DOI | MR | Zbl
[6] Burenkov V. I., Evans V. D., “Vesovoe neravenstvo Khardi dlya raznostei i polnaya nepreryvnost vlozheniya prostranstv Soboleva dlya oblastei so skol ugodno silnym vyrozhdeniem”, Dokl. RAN, 355:5 (1997), 583–585 | MR | Zbl
[7] Burenkov V. I., Evans W. D., “Weighted Hardy-type inequalities for differences and the extension problem for spaces with generalized smoothness”, J. London Math. Soc., ser. 2, 57 (1998), 209–230 | DOI | MR | Zbl
[8] Burenkov V. I., Evans W. D., Goldman M. L., “On weighted Hardy- and Poincaré-type inequaliteis for differences”, J. Inequal. and Appl., 1 (1997), 1–10 | DOI | MR
[9] Burenkov V. I., Goldman M. L., “O tochnykh analogakh neravenstva Khardi dlya raznostei v sluchae svyazannykh vesov”, Dokl. RAN, 366:2 (1999), 155–157 | MR | Zbl
[10] Burenkov V. I., Verdiev T. V., “Prodolzhenie nulem funktsii iz prostranstv s obobschennoi gladkostyu dlya vyrozhdayuschikhsya oblastei”, Tr. MIAN, 227, 1999, 78–91 | MR | Zbl
[11] Burenkov V. I., Goldman M. L., “Kriterii spravedlivosti dvukhvesovogo neravenstva tipa Khardi dlya modulei nepreryvnosti”, Funktsionalnye prostranstva. Differentsialnye operatory. Problemy matematicheskogo obrazovaniya, Tez. dokl. Mezhdunar. konf., posvyaschennoi 75-letiyu chl.-korr. RAN prof. L. D. Kudryavtseva, Izd-vo RUDN, M., 1998, 16
[12] Brudnyi Yu. A., “Prostranstva, opredelyaemye s pomoschyu lokalnykh priblizhenii”, Tr. Mosk. mat. o-va, 24, 1971, 70–132 | MR
[13] Brudnyi Yu. A., “Mnogomernyi analog odnoi teoremy Uitni”, Mat. sb., 82:2 (1970), 175–191 | MR | Zbl
[14] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR
[15] Triebel H., Theory of function spaces, II, Monogr. Math., 84, Birkhäuser, Basel–Boston, 1992 | MR | Zbl
[16] Burenkov V. I., Sobolev spaces on domains, Teubner, Stuttgart–Leipzig, 1998 | MR | Zbl
[17] Goldman M. L., “O vlozhenii obobschennykh prostranstv Nikolskogo–Besova v prostranstva Lorentsa”, Tr. MIAN, 172, 1985, 128–139 | MR
[18] Goldman M. L., “Kriterii vlozheniya raznykh metrik dlya izotropnykh prostranstv Besova s proizvolnymi modulyami nepreryvnosti”, Tr. MIAN, 201, 1992, 186–218 | MR | Zbl
[19] Goldman M. L., “Teoremy vlozheniya dlya anizotropnykh prostranstv Nikolskogo–Besova s modulyami nepreryvnosti obschego vida”, Tr. MIAN, 170, 1984, 86–104 | MR | Zbl
[20] Goldman M. L., Hardy type inequalities on the cone of quasimonotone functions, Res. Rept 98/31, Russ. Acad. Sci. Far-East Branch Comput. Center, Khabarovsk, 1998, 70 pp.