Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_1999_227_a4, author = {V. I. Burenkov and T. V. Verdiev}, title = {Extension by {Zero} of {Functions} in {Spaces} with {Generalized} {Smoothness} for {Degenerate} {Domains}}, journal = {Informatics and Automation}, pages = {78--91}, publisher = {mathdoc}, volume = {227}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a4/} }
TY - JOUR AU - V. I. Burenkov AU - T. V. Verdiev TI - Extension by Zero of Functions in Spaces with Generalized Smoothness for Degenerate Domains JO - Informatics and Automation PY - 1999 SP - 78 EP - 91 VL - 227 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a4/ LA - ru ID - TRSPY_1999_227_a4 ER -
V. I. Burenkov; T. V. Verdiev. Extension by Zero of Functions in Spaces with Generalized Smoothness for Degenerate Domains. Informatics and Automation, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Tome 227 (1999), pp. 78-91. http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a4/
[1] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. Mosk. mat. o-va, 5, 1956, 483–521 | MR
[2] Burenkov V. I., “Ob odnom sposobe prodolzheniya differentsiruemykh funktsii”, Tr. MIAN, 140 (1976), 27–67 | MR | Zbl
[3] Burenkov V. I., Goldman M. L., “O tochnykh analogakh neravenstva Khardi dlya raznostei v sluchae svyazannykh vesov”, Dokl. RAN, 366:2 (1999), 155–157 | MR | Zbl
[4] Burenkov V. I., Evans V. D., “Vesovoe neravenstvo Khardi dlya raznostei i polnaya nepreryvnost vlozheniya prostranstv Soboleva dlya oblastei so skol ugodno silnym vyrozhdeniem”, Dokl. RAN, 355:5, 583–585 | MR | Zbl
[5] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR
[6] Yakovlev G. N., “Granichnye svoistva funktsii klassa $W_p^l$ na oblastyakh s uglovymi tochkami”, DAN SSSR, 140:1 (1961), 73–76 | MR | Zbl
[7] Burenkov V. I., Evans W. D., “Weighted Hardy-type inequalities for differences and the extension problem for spaces with generalized smoothness”, J. London Math. Soc., ser. 2, 57 (1998), 209–230 | DOI | MR | Zbl
[8] Burenkov V. I., Evans W. D., Goldman M. L., “On weighted Hardy- and Poincaré-type inequalities for differences”, J. Inequal. and Appl., 1 (1997), 1–10 | DOI | MR
[9] Heinig H. P., Kufner A., Persson L.-E., “On some fractional order Hardy inequalities”, J. Inequal. and Appl., 1 (1997), 25–46 | DOI | MR | Zbl
[10] Kufner A., Persson L.-E., “Hardy inequalities of fractional order via interpolation”, Inequalities and application, World Sci., Singapore, 1994, 417–430 | MR | Zbl
[11] Kufner A., Triebel H., “Generalizations of Hardy's inequality”, Conf. Sem. Mat. Univ. Bari, 1978, no. 156 | MR
[12] Opic B., Kufner A., Hardy-type inequalities, Longman Sci. and Techn., Harlow, 1990 | MR | Zbl
[13] Kalyabin G. A., “Teoremy o prodolzhenii, multiplikatorakh i diffeomorfizmakh dlya obobschennykh klassov Soboleva–Liuvillya v oblastyakh s lipshitsevoi granitsei”, Tr. MIAN, 172, 1985, 173–186 | MR | Zbl
[14] Besov O. V., “O prodolzhenii nulem funktsii mnogikh peremennykh”, Mat. zametki, 64:3 (1998), 351–365 | MR | Zbl