Differential Properties of the Solution to the First Mixed Boundary Value Problem for the Sobolev System
Informatics and Automation, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Tome 227 (1999), pp. 311-319.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TRSPY_1999_227_a21,
     author = {S. V. Uspenskii and E. N. Vasil'eva and S. I. Yanov},
     title = {Differential {Properties} of the {Solution} to the {First} {Mixed} {Boundary} {Value} {Problem} for the {Sobolev} {System}},
     journal = {Informatics and Automation},
     pages = {311--319},
     publisher = {mathdoc},
     volume = {227},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a21/}
}
TY  - JOUR
AU  - S. V. Uspenskii
AU  - E. N. Vasil'eva
AU  - S. I. Yanov
TI  - Differential Properties of the Solution to the First Mixed Boundary Value Problem for the Sobolev System
JO  - Informatics and Automation
PY  - 1999
SP  - 311
EP  - 319
VL  - 227
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a21/
LA  - ru
ID  - TRSPY_1999_227_a21
ER  - 
%0 Journal Article
%A S. V. Uspenskii
%A E. N. Vasil'eva
%A S. I. Yanov
%T Differential Properties of the Solution to the First Mixed Boundary Value Problem for the Sobolev System
%J Informatics and Automation
%D 1999
%P 311-319
%V 227
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a21/
%G ru
%F TRSPY_1999_227_a21
S. V. Uspenskii; E. N. Vasil'eva; S. I. Yanov. Differential Properties of the Solution to the First Mixed Boundary Value Problem for the Sobolev System. Informatics and Automation, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Tome 227 (1999), pp. 311-319. http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a21/

[1] Sobolev S. L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. mat., 18:1 (1954), 3–50 | MR | Zbl

[2] Sobolev S. L., “O dvizhenii simmetricheskogo volchka s polostyu, napolnennoi zhidkostyu”, Prikl. mekhanika i tekhn. fizika, 1960, no. 3, 20–55 | Zbl

[3] Aleksandryan R. A., “Spektralnye svoistva operatorov, porozhdennykh sistemami differentsialnykh uravnenii tipa S. L. Soboleva”, Tr. Mosk. mat. o-va, 9, 1960, 455–505 | Zbl

[4] Zelenyak T. I., Kapitonov B. V., Skazka V. V., Fokin M. V., O probleme S. L. Soboleva v teorii malykh kolebanii vraschayuscheisya zhidkosti, Izd. VTs SO AN SSSR, Novosibirsk, 1983, 20 pp.

[5] Maslennikova V. N., Bogovskii M. E., “O sisteme Soboleva s tremya prostranstvennymi peremennymi”, Tr. seminara S. L. Soboleva, Novosibirsk, 1976, 49–68

[6] Kopachevskii N. D., Krein S. G., Ngo Zui Kan, Operatornye metody v lineinoi gidrodinamike, Nauka, M., 1989, 416 pp. | MR

[7] Vishik M. I., “Zadacha Koshi dlya uravnenii s operatornymi koeffitsientami, smeshannaya kraevaya zadacha dlya sistem differentsialnykh uravnenii i priblizhennyi metod ikh resheniya”, Mat. sb., 39:1 (1956), 51–148 | MR

[8] Dezin A. A., Zelenyak T. I., Maslennikova V. N., “O nekotorykh matematicheskikh zadachakh v gidrodinamike”, Differentsialnye uravneniya s chastnymi proizvodnymi, Nauka, Novosibirsk, 1980, 21–31 | MR

[9] Dubinskii Yu. A., “Smeshannye zadachi dlya nekotorykh klassov differentsialnykh uravnenii s chastnymi proizvodnymi”, Tr. Mosk. mat. o-va, 20, 1969, 205–240 | MR

[10] Uspenskii S. V., Demidenko G. V., Perepelkin V. G., Teoremy vlozheniya i prilozheniya k differentsialnym uravneniyam, Nauka, Novosibirsk, 1984, 224 pp. | MR

[11] Demidenko G. V., Matveeva I. I., “Ob odnom klasse kraevykh zadach dlya sistemy Soboleva”, Differentsialnye uravneniya s chastnymi proizvodnymi, In-t matematiki SO AN SSSR, Novosibirsk, 1989, 54–78 | MR

[12] Uspenskii S. V., Vasileva E. N., “Kachestvennoe issledovanie resheniya odnoi zadachi S. L. Soboleva pri $t\to\infty$”, Tr. MIAN, 210, 1995, 274–283 | MR

[13] Lezhnev V. G., Asimptoticheskie zadachi lineinoi gidrodinamiki, Izd. Kuban. gos. un-ta, Krasnodar, 1993, 93 pp.

[14] Yanov S. I., “Otsenki pri $t\to\infty$ resheniya pervoi kraevoi zadachi dlya $n$-mernoi sistemy S. L. Soboleva”, Teoremy vlozheniya i ikh prilozheniya, vyp. 1, Novosibirsk, 1982, 139–147 | MR | Zbl

[15] Uspenskii S. V., Vasileva E. N., “Lokalnye svoistva reshenii uravneniya S. L. Soboleva”, Vestn. Ros. un-ta Druzhby narodov. Ser. mat., 1996, no. 3, 143–155

[16] Zelenyak T. I., Izbrannye voprosy kachestvennoi teorii uravnenii s chastnymi proizvodnymi, Izd. NGU, Novosibirsk, 1970, 164 pp.

[17] Yanov S. I., “O svedenii smeshannykh zadach dlya odnogo klassa sistem ne tipa Koshi–Kovalevskoi k uravneniyam Fredgolma vtorogo roda”, Teoriya kubaturnykh formul i prilozheniya funktsionalnogo analiza k zadacham matematicheskoi fiziki, vyp. 1, Novosibirsk, 1981, 139–149 | MR | Zbl

[18] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauch. kniga, Novosibirsk, 1998, 436 pp. | MR | Zbl

[19] Lebedev V. I., “O sisteme uravnenii tipa S. L. Soboleva”, UMN, 13:1 (1958), 215–216