Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_1999_227_a15, author = {S. M. Nikol'skii}, title = {A~Boundary {Value} {Problem} for {Polynomials}}, journal = {Informatics and Automation}, pages = {223--236}, publisher = {mathdoc}, volume = {227}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a15/} }
S. M. Nikol'skii. A~Boundary Value Problem for Polynomials. Informatics and Automation, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Tome 227 (1999), pp. 223-236. http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a15/
[1] Sobolev S. L., Uravneniya matematicheskoi fiziki, Fizmatgiz, M., 1954, 444 pp. | MR
[2] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovom prostranstve, Mir, M., 1974, 333 pp. | Zbl
[3] Nikolskii S. M., “Variatsionnaya problema dlya uravneniya ellipticheskogo tipa s vyrozhdeniem na granitse”, Tr. MIAN, 150, 1979, 212–238
[4] Shafarevich I. R., Algebraicheskaya geometriya, Izd-vo MGU, M., 1968, 250 pp. | MR
[5] Volkov E. A., “Kriterii razreshimosti kraevykh zadach dlya uravnenii Laplasa i Puassona na spetsialnykh treugolnikakh i pryamougolnike v algebraicheskikh mnogochlenakh”, Tr. MIAN, 122–136 | Zbl