A~Boundary Value Problem for Polynomials
Informatics and Automation, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Tome 227 (1999), pp. 223-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TRSPY_1999_227_a15,
     author = {S. M. Nikol'skii},
     title = {A~Boundary {Value} {Problem} for {Polynomials}},
     journal = {Informatics and Automation},
     pages = {223--236},
     publisher = {mathdoc},
     volume = {227},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a15/}
}
TY  - JOUR
AU  - S. M. Nikol'skii
TI  - A~Boundary Value Problem for Polynomials
JO  - Informatics and Automation
PY  - 1999
SP  - 223
EP  - 236
VL  - 227
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a15/
LA  - ru
ID  - TRSPY_1999_227_a15
ER  - 
%0 Journal Article
%A S. M. Nikol'skii
%T A~Boundary Value Problem for Polynomials
%J Informatics and Automation
%D 1999
%P 223-236
%V 227
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a15/
%G ru
%F TRSPY_1999_227_a15
S. M. Nikol'skii. A~Boundary Value Problem for Polynomials. Informatics and Automation, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Tome 227 (1999), pp. 223-236. http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a15/

[1] Sobolev S. L., Uravneniya matematicheskoi fiziki, Fizmatgiz, M., 1954, 444 pp. | MR

[2] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovom prostranstve, Mir, M., 1974, 333 pp. | Zbl

[3] Nikolskii S. M., “Variatsionnaya problema dlya uravneniya ellipticheskogo tipa s vyrozhdeniem na granitse”, Tr. MIAN, 150, 1979, 212–238

[4] Shafarevich I. R., Algebraicheskaya geometriya, Izd-vo MGU, M., 1968, 250 pp. | MR

[5] Volkov E. A., “Kriterii razreshimosti kraevykh zadach dlya uravnenii Laplasa i Puassona na spetsialnykh treugolnikakh i pryamougolnike v algebraicheskikh mnogochlenakh”, Tr. MIAN, 122–136 | Zbl