An Interpolation Method for Deriving a~priori Estimates for Strong Solutions to Second-Order Semilinear Parabolic Equations
Informatics and Automation, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Tome 227 (1999), pp. 180-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TRSPY_1999_227_a13,
     author = {G. G. Laptev},
     title = {An {Interpolation} {Method} for {Deriving} a~priori {Estimates} for {Strong} {Solutions} to {Second-Order} {Semilinear} {Parabolic} {Equations}},
     journal = {Informatics and Automation},
     pages = {180--191},
     publisher = {mathdoc},
     volume = {227},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a13/}
}
TY  - JOUR
AU  - G. G. Laptev
TI  - An Interpolation Method for Deriving a~priori Estimates for Strong Solutions to Second-Order Semilinear Parabolic Equations
JO  - Informatics and Automation
PY  - 1999
SP  - 180
EP  - 191
VL  - 227
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a13/
LA  - ru
ID  - TRSPY_1999_227_a13
ER  - 
%0 Journal Article
%A G. G. Laptev
%T An Interpolation Method for Deriving a~priori Estimates for Strong Solutions to Second-Order Semilinear Parabolic Equations
%J Informatics and Automation
%D 1999
%P 180-191
%V 227
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a13/
%G ru
%F TRSPY_1999_227_a13
G. G. Laptev. An Interpolation Method for Deriving a~priori Estimates for Strong Solutions to Second-Order Semilinear Parabolic Equations. Informatics and Automation, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Tome 227 (1999), pp. 180-191. http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a13/

[1] Pokhozhaev S. I., “Ob uravneniyakh vida $\Delta u=f(x,u,Du)$”, Mat. sb., 113:2 (1980), 324–338 | MR | Zbl

[2] Pokhozhaev S. I., “O razreshimosti kvazilineinykh ellipticheskikh uravnenii proizvolnogo poryadka”, Mat. sb., 117:2 (1982), 251–265 | MR | Zbl

[3] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[4] Arkhipova A. A., Uraltseva N. N., “O suschestvovanii gladkikh reshenii zadach s vypuklymi ogranicheniyami na granitse oblasti dlya parabolicheskikh sistem”, Zap. nauch. seminarov LOMI, 171, 1989, 5–11 | MR | Zbl

[5] Ladyzhenskaya O. A., Uraltseva N. N., “Obzor rezultatov po razreshimosti kraevykh zadach dlya ravnomerno ellipticheskikh i parabolicheskikh kvazilineinykh uravnenii vtorogo poryadka, imeyuschikh neogranichennye osobennosti”, UMN, 41:5 (1986), 59–83 | MR | Zbl

[6] Laptev G. G., “Suschestvovanie silnykh reshenii polulineinykh parabolicheskikh sistem vtorogo poryadka”, Dif. uravneniya, 34:12 (1998), 1634–1639 | MR | Zbl

[7] Wahl W. von, “Extention of a result of Ladyženskaja and Ural'ceva concerning second-order parabolic equations of arbitrary order”, Ann. polon. math., 41:1 (1983), 63–72 | MR | Zbl

[8] Wahl W. von, “Klassishe Lösbarkeit im Großen für nichtlineare parabolische Systeme und das Verhalten der Lösungen für $t\to +\infty$”, Nachr. Acad. Wiss. Göttingen. II. Math.-phys. Kl., 1981, no. 5, 131–177 | MR | Zbl

[9] Laptev G. G., “Apriornye otsenki silnykh reshenii polulineinykh parabolicheskikh uravnenii”, Mat. zametki, 64:4 (1998), 564–572 | MR | Zbl

[10] Laptev G. G., “Apriornye otsenki i suschestvovanie silnykh reshenii polulineinykh parabolicheskikh sistem”, Dif. uravneniya, 34:4 (1998), 518–522 | MR | Zbl

[11] Besov O. V., Ilin V. A., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR

[12] Solonnikov V. A., O kraevykh zadachakh dlya lineinykh parabolicheskikh sistem differentsialnykh uravnenii obschego vida, Tr. MIAN, 83, Nauka, L., 1965 | MR