Embedding of Sobolev Spaces on H\"older Domains
Informatics and Automation, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Tome 227 (1999), pp. 170-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that the embedding $W^1_p(\Omega)\hookrightarrow L_q(\Omega)$, $1\leq p$, is equivalent to certain isoperimetric or capacity inequalities for the subsets of $\Omega$. P. Hajłasz with P. Koskela and T. Kilpeläinen with J. Malý have proved in their recent works the inequalities of this type for a wide class of $s$+John domains. In the present paper, we prove the exact isoperimetric inequality and the embedding $W^1_p(\Omega)\hookrightarrow L_q(\Omega)$ with the best index $q$ for a narrower class of Hölder domains. A Hölder domain locally coincides with the epigraph of a function satisfying the Hölder condition. The improvement of the index $q$ as compared with the case considered in the aforementioned works is achieved due to the application of special coverings of the subsets of $\Omega$.
@article{TRSPY_1999_227_a12,
     author = {D. A. Labutin},
     title = {Embedding of {Sobolev} {Spaces} on {H\"older} {Domains}},
     journal = {Informatics and Automation},
     pages = {170--179},
     publisher = {mathdoc},
     volume = {227},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a12/}
}
TY  - JOUR
AU  - D. A. Labutin
TI  - Embedding of Sobolev Spaces on H\"older Domains
JO  - Informatics and Automation
PY  - 1999
SP  - 170
EP  - 179
VL  - 227
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a12/
LA  - ru
ID  - TRSPY_1999_227_a12
ER  - 
%0 Journal Article
%A D. A. Labutin
%T Embedding of Sobolev Spaces on H\"older Domains
%J Informatics and Automation
%D 1999
%P 170-179
%V 227
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a12/
%G ru
%F TRSPY_1999_227_a12
D. A. Labutin. Embedding of Sobolev Spaces on H\"older Domains. Informatics and Automation, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Tome 227 (1999), pp. 170-179. http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a12/

[1] Adams R. A., Sobolev spaces, Acad. Press, New York–London, 1975 | MR | Zbl

[2] Besov O. V., “Integralnye predstavleniya funktsii i teoremy vlozheniya na oblastyakh s usloviem gibkogo roga”, Tr. MIAN, 170, 1984, 12–30 | MR | Zbl

[3] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[4] Bojarski B., “Remarks on Sobolev imbedding inequalities”, Complex analysis. Joensuu, 1987, Lect. Notes Math., 1351, Springer, Berlin–New York, 1988, 52–68 | MR

[5] Burenkov V. I., “Ob odnom sposobe prodolzheniya differentsiruemykh funktsii”, Tr. MIAN, 140, 1976, 27–67 | MR | Zbl

[6] Burenkov V. I., Evans W. D., “Weighted Hardy-type inequalities for differences and the extension problem for spaces with generalized smoothness”, J. London Math. Soc., ser. 2, 57:1 (1998), 209–230 | DOI | MR | Zbl

[7] Burenkov V. I., Evans W. D., “On compact imbeddings of Sobolev spaces and extension operators which preserve some smoothness”, Function spaces, differential operators and nonlinear analysis (Proc. Paseky na Jizerou, sept. 3–9, 1995), Prometheus Publ. House, Praha, 1996, 17–26 | MR | Zbl

[8] Gilbarg D., Trudinger N. S., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Mir, M., 1989 | MR

[9] Globenko I. G., “Nekotorye voprosy teorii vlozheniya dlya oblastei s osobennostyami na granitse”, Mat. sb., 57:2 (1962), 201–224 | MR | Zbl

[10] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR

[11] DeVore R. A., Lorentz G. G., Constructive approximation, Springer-Verl., Berlin, 1993 | MR

[12] Hajłasz P., Koskela P., “Isoperimetric inequalities and imbedding theorems in irregular domains”, J. London Math. Soc., ser. 2, 58:2 (1998), 425–450 | DOI | MR | Zbl

[13] Kilpeläinen T., Malý J., Sobolev inequalities on sets with irregular boundaries, Preprint. Univ. Jyväskylä, dec. 1998, 15 pp. | MR | Zbl

[14] Labutin D. A., “Integralnoe predstavlenie funktsii i vlozhenie prostranstv Soboleva na oblastyakh s nulevymi uglami”, Mat. zametki, 61:2 (1997), 201–219 | MR | Zbl

[15] Mazya V. G., Prostranstva Soboleva, Izd-vo LGU, L., 1985

[16] Maz'ya V. G., Poborchii S. V., Imbedding theorems for Sobolev spaces in domains with cusps, Preprint Linköping Univ., LiTH-MAT-R-92-14, 1992

[17] Maz'ya V. G., Poborchii S. V., Differentiable functions on bad domains, World Sci., River Edge, N. J., 1997 | MR

[18] Opic B., Kufner A., Hardy-type inequalities, Pitman Res. Notes Math. Ser., 219, Longman Sci. and Techn., Harlow, 1990 | MR | Zbl

[19] Reshetnyak Yu. G., “Integralnoe predstavlenie differentsiruemykh funktsii v oblastyakh s negladkoi granitsei”, Sib. mat. zhurn., 21 (1980), 108–116 | MR | Zbl

[20] Stein E. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[21] Stepanov V. D., “Dvukhvesovye otsenki dlya integralov Rimana–Liuvillya”, Izv. AN SSSR. Ser. mat., 54 (1990), 645–656 | Zbl

[22] Smith W., Stegenga D. A., “Hölder domains and Poincaré domains”, Trans. Amer. Math. Soc., 319:1 (1990), 67–100 | DOI | MR | Zbl

[23] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[24] Ziemer W. P., Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Grad. Texts Math., 120, Springer-Verl., New York etc., 1989 | MR | Zbl