Upper Estimates for the Coefficients of Algebraic Polynomials via Their $L_p$-Norms on Intervals
Informatics and Automation, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Tome 227 (1999), pp. 152-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TRSPY_1999_227_a10,
     author = {G. A. Kalyabin},
     title = {Upper {Estimates} for the {Coefficients} of {Algebraic} {Polynomials} via {Their} $L_p${-Norms} on {Intervals}},
     journal = {Informatics and Automation},
     pages = {152--161},
     publisher = {mathdoc},
     volume = {227},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a10/}
}
TY  - JOUR
AU  - G. A. Kalyabin
TI  - Upper Estimates for the Coefficients of Algebraic Polynomials via Their $L_p$-Norms on Intervals
JO  - Informatics and Automation
PY  - 1999
SP  - 152
EP  - 161
VL  - 227
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a10/
LA  - ru
ID  - TRSPY_1999_227_a10
ER  - 
%0 Journal Article
%A G. A. Kalyabin
%T Upper Estimates for the Coefficients of Algebraic Polynomials via Their $L_p$-Norms on Intervals
%J Informatics and Automation
%D 1999
%P 152-161
%V 227
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a10/
%G ru
%F TRSPY_1999_227_a10
G. A. Kalyabin. Upper Estimates for the Coefficients of Algebraic Polynomials via Their $L_p$-Norms on Intervals. Informatics and Automation, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Tome 227 (1999), pp. 152-161. http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a10/

[1] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1975 | MR

[2] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[3] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, per. s angl., Nauka, M., 1966 | MR

[4] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR