Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_1999_227_a1, author = {K. O. Besov}, title = {On the {Nikol'skii} {Classes} of {Polyharmonic} {Functions}}, journal = {Informatics and Automation}, pages = {43--55}, publisher = {mathdoc}, volume = {227}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a1/} }
K. O. Besov. On the Nikol'skii Classes of Polyharmonic Functions. Informatics and Automation, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Tome 227 (1999), pp. 43-55. http://geodesic.mathdoc.fr/item/TRSPY_1999_227_a1/
[1] Dolzhenko E. P., “O granichnom povedenii komponent polianaliticheskoi funktsii”, Dokl. RAN, 338:5 (1994), 585–588 | MR | Zbl
[2] Dolzhenko E. P., “O granichnom povedenii komponent polianaliticheskoi funktsii”, Mat. zametki, 63:6 (1998), 821–834 | MR | Zbl
[3] Besov K. O., “O granichnom povedenii komponent poligarmonicheskikh funktsii”, Mat. zametki, 64:4 (1998), 518–530 | MR | Zbl
[4] Dolzhenko E. P., Danchenko V. I., “O granichnom povedenii reshenii obobschennogo uravneniya Koshi–Rimana”, Vestn. MGU. Matematika. Mekhanika, 1998, no. 3, 16–24 | MR
[5] Besov K. O., “O nalichii interferentsii mezhdu komponentami bigarmonicheskikh funktsii”, Vestn. MGU. Matematika. Mekhanika, 1999, no. 6 | MR
[6] Mikhailov V. P., “O suschestvovanii predelnykh znachenii na granitse oblasti reshenii poligarmonicheskogo uravneniya”, Mat. sb., 187:11 (1996), 89–114 | MR | Zbl
[7] Almansi E., “Sull'integrazione dell'equazione differenziale $\Delta ^n=0$”, Ann. mat., ser. 3, 2 (1899), 1–59
[8] Nicolesco M., Les fonctions polyharmoniques, Hermann, Paris, 1936
[9] Muramatu T., “On Besov spaces and Sobolev spaces of generalized functions defined on general region”, Publ. Res. Inst. Math. Sci. Kyoto Univ., 9:2 (1974), 325–396 | DOI | MR | Zbl
[10] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR
[11] Bitsadze A. V., “O nekotorykh svoistvakh poligarmonicheskikh funktsii”, Dif. uravneniya, 24:5 (1988), 825–831 | MR | Zbl
[12] Bergman S., Shiffer M., Kernel functions and elliptic differential equations in mathematical physics, Acad. Press, N. Y., 1953 | MR | Zbl