Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_1999_226_a7, author = {P. P. Kulish and A. I. Mudrov}, title = {Twist-Related {Geometries} on {q-Minkowski} {Space}}, journal = {Informatics and Automation}, pages = {97--111}, publisher = {mathdoc}, volume = {226}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a7/} }
P. P. Kulish; A. I. Mudrov. Twist-Related Geometries on q-Minkowski Space. Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 97-111. http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a7/
[1] Reshetikhin N. Yu., Takhtadzhan L. A., Faddeev L. D., “Kvantovanie grupp Li i algebr Li”, Algebra i analiz, 1:1 (1989), 178–206 | MR
[2] Woronowicz S. L., “Differential calculus on compact matrix pseudogroups (quantum groups)”, Commun. Math. Phys., 122 (1989), 125–170 | DOI | MR | Zbl
[3] Schirrmacher A., Wess J., Zumino B., “The two-parameter deformation of $GL(2)$, its differential calculus, and Lie algebra”, Ztschr. Phys. C, 49 (1991), 317–324 | DOI | MR
[4] Schirrmacher A., “The multiparametric deformation of $GL(n)$ and the covariant differential calculus”, Ztschr. Phys. C, 50 (1991), 321–327 | DOI | MR
[5] Lukierski J., Ruegg H., Tolstoy V. N., Nowicki A., “Twisted classical Poincaré algebras”, J. Phys. A, 27 (1994), 2389–2399 | DOI | MR | Zbl
[6] de Azcárraga J. A., Kulish P. P., Rodenas F., “On the physical contents of $q$-deformed Minkowski spaces”, Phys. Lett. B, 351 (1995), 123–130 | DOI | MR
[7] Pillin M., Schmidke W. B., Wess J., “$q$-Deformed relativistic one-particle states”, Nucl. Phys. B, 403 (1993), 223 | DOI | MR | Zbl
[8] Kulish P. P., “Representations of $Q$-Minkowski space algebra”, Algebra i analiz, 6:2 (1994), 195–205 | MR | Zbl
[9] de Azcárraga J. A., Kulish P. P., Rodenas F., “Twisted $h$-spacetimes and invariant equations”, Ztschr. Phys. C, 76 (1997), 567–576 | MR
[10] Drinfeld V. G., “O postoyannykh kvaziklassicheskikh resheniyakh kvantovogo uravneniya Yanga–Bakstera”, DAN SSSR, 273 (1983), 531–535 | MR
[11] Drinfeld V. G., “Kvazikhopfovy algebry”, Algebra i analiz, 1:6 (1989), 114–148 | MR
[12] Mudrov A. I., “Kvantovye deformatsii algebry Lorentsa”, Yader. fizika, 60 (1997), 946–958 | MR
[13] Reshetikhin N. Yu., Semenov-Tian-Shansky M. A., “Quantum $R$-matrices and their factorization problems in quantum groups”, J. Geom. and Phys., 5 (1988), 533 | DOI | MR | Zbl
[14] Mudrov A. I., “Twisting cocycle for null-plane quantized Poincaré algebra”, J. Phys. A, 31 (1998), 6219–6224 ; arXiv: q-alg/9711001 | DOI | MR | Zbl
[15] Mudrov A. I., “Twisting cocycles in fundamental representation and triangular bicrossproduct Hopf algebras”, J. Math. Phys., 39 (1998), 5608–5616 ; arXiv: math.QA/9804024 | DOI | MR | Zbl
[16] Kulish P. P., Lyakhovsky V. D., Mudrov A. I., Extended Jordanian twists for Lie algebras, Preprint PDMI-98/11, S.-Peterburg, 1998 ; arXiv: math.QA/9806014 | MR
[17] Drinfeld V. G., “Quantum groups”, Proc. Intern. Congr. Math., v. 1 (Berkeley 1986), ed. A. M. Gleason, Amer. Math. Soc., Providence, R.I., 1987, 798–820 | MR
[18] Ogievetski O., Preprint MPI-Ph/92-99, Munich, 1992; Rend. Circ. Mat. Palermo. Suppl., ser. 2, 37 (1994), 185, Proc. Winter School Geometry and Physics. Zidkov, 1993 | MR
[19] Podles P., Woronowicz S. L., “Quantum deformation of Lorentz group”, Commun. Math. Phys., 130 (1990), 381–431 | DOI | MR | Zbl
[20] Woronowicz S. L., Zakrzewski S. A., Compos. math., 90 (1994), 211 | MR | Zbl
[21] Schmidke W. B., Wess J., Zumino B., “A $q$-deformed Lorentz algebra”, Ztschr. Phys. C, 52 (1991), 471–476 | DOI | MR | Zbl
[22] Ogievetski O., Schmidke W. B., Wess J., Zumino B., $q$-Deformed Poincaré algebra, Preprints MPI-Ph/91-98, LBL-31703, UCB 92/04 | MR
[23] Chari V., Pressley A. N., A guide to quantum groups, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl
[24] Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., “Deformation theory and quantization, I”, Ann. Phys., 111 (1978), 61–110 ; “II”, 111–151 | DOI | MR | Zbl | MR | Zbl
[25] Kulish P. P., Mudrov A. I., On twisting solutions to the Yang–Baxter equation, Preprint PDMI 98-31, S.-Peterburg, 1998 ; arXiv: math.QA/9811044 | MR