Twist-Related Geometries on q-Minkowski Space
Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 97-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

The role of the quantum universal enveloping algebras of symmetries in constructing the noncommutative geometry of the space–time including vector bundles, measure, equations of motion and their solutions is discussed. In the framework of the twist theory, the Klein–Gordon–Fock and Dirac equations on the quantum Minkowski space are studied from this point of view for the simplest quantum deformation of the Lorentz algebra induced by its Cartan subalgebra twist.
@article{TRSPY_1999_226_a7,
     author = {P. P. Kulish and A. I. Mudrov},
     title = {Twist-Related {Geometries} on {q-Minkowski} {Space}},
     journal = {Informatics and Automation},
     pages = {97--111},
     publisher = {mathdoc},
     volume = {226},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a7/}
}
TY  - JOUR
AU  - P. P. Kulish
AU  - A. I. Mudrov
TI  - Twist-Related Geometries on q-Minkowski Space
JO  - Informatics and Automation
PY  - 1999
SP  - 97
EP  - 111
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a7/
LA  - ru
ID  - TRSPY_1999_226_a7
ER  - 
%0 Journal Article
%A P. P. Kulish
%A A. I. Mudrov
%T Twist-Related Geometries on q-Minkowski Space
%J Informatics and Automation
%D 1999
%P 97-111
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a7/
%G ru
%F TRSPY_1999_226_a7
P. P. Kulish; A. I. Mudrov. Twist-Related Geometries on q-Minkowski Space. Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 97-111. http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a7/

[1] Reshetikhin N. Yu., Takhtadzhan L. A., Faddeev L. D., “Kvantovanie grupp Li i algebr Li”, Algebra i analiz, 1:1 (1989), 178–206 | MR

[2] Woronowicz S. L., “Differential calculus on compact matrix pseudogroups (quantum groups)”, Commun. Math. Phys., 122 (1989), 125–170 | DOI | MR | Zbl

[3] Schirrmacher A., Wess J., Zumino B., “The two-parameter deformation of $GL(2)$, its differential calculus, and Lie algebra”, Ztschr. Phys. C, 49 (1991), 317–324 | DOI | MR

[4] Schirrmacher A., “The multiparametric deformation of $GL(n)$ and the covariant differential calculus”, Ztschr. Phys. C, 50 (1991), 321–327 | DOI | MR

[5] Lukierski J., Ruegg H., Tolstoy V. N., Nowicki A., “Twisted classical Poincaré algebras”, J. Phys. A, 27 (1994), 2389–2399 | DOI | MR | Zbl

[6] de Azcárraga J. A., Kulish P. P., Rodenas F., “On the physical contents of $q$-deformed Minkowski spaces”, Phys. Lett. B, 351 (1995), 123–130 | DOI | MR

[7] Pillin M., Schmidke W. B., Wess J., “$q$-Deformed relativistic one-particle states”, Nucl. Phys. B, 403 (1993), 223 | DOI | MR | Zbl

[8] Kulish P. P., “Representations of $Q$-Minkowski space algebra”, Algebra i analiz, 6:2 (1994), 195–205 | MR | Zbl

[9] de Azcárraga J. A., Kulish P. P., Rodenas F., “Twisted $h$-spacetimes and invariant equations”, Ztschr. Phys. C, 76 (1997), 567–576 | MR

[10] Drinfeld V. G., “O postoyannykh kvaziklassicheskikh resheniyakh kvantovogo uravneniya Yanga–Bakstera”, DAN SSSR, 273 (1983), 531–535 | MR

[11] Drinfeld V. G., “Kvazikhopfovy algebry”, Algebra i analiz, 1:6 (1989), 114–148 | MR

[12] Mudrov A. I., “Kvantovye deformatsii algebry Lorentsa”, Yader. fizika, 60 (1997), 946–958 | MR

[13] Reshetikhin N. Yu., Semenov-Tian-Shansky M. A., “Quantum $R$-matrices and their factorization problems in quantum groups”, J. Geom. and Phys., 5 (1988), 533 | DOI | MR | Zbl

[14] Mudrov A. I., “Twisting cocycle for null-plane quantized Poincaré algebra”, J. Phys. A, 31 (1998), 6219–6224 ; arXiv: q-alg/9711001 | DOI | MR | Zbl

[15] Mudrov A. I., “Twisting cocycles in fundamental representation and triangular bicrossproduct Hopf algebras”, J. Math. Phys., 39 (1998), 5608–5616 ; arXiv: math.QA/9804024 | DOI | MR | Zbl

[16] Kulish P. P., Lyakhovsky V. D., Mudrov A. I., Extended Jordanian twists for Lie algebras, Preprint PDMI-98/11, S.-Peterburg, 1998 ; arXiv: math.QA/9806014 | MR

[17] Drinfeld V. G., “Quantum groups”, Proc. Intern. Congr. Math., v. 1 (Berkeley 1986), ed. A. M. Gleason, Amer. Math. Soc., Providence, R.I., 1987, 798–820 | MR

[18] Ogievetski O., Preprint MPI-Ph/92-99, Munich, 1992; Rend. Circ. Mat. Palermo. Suppl., ser. 2, 37 (1994), 185, Proc. Winter School Geometry and Physics. Zidkov, 1993 | MR

[19] Podles P., Woronowicz S. L., “Quantum deformation of Lorentz group”, Commun. Math. Phys., 130 (1990), 381–431 | DOI | MR | Zbl

[20] Woronowicz S. L., Zakrzewski S. A., Compos. math., 90 (1994), 211 | MR | Zbl

[21] Schmidke W. B., Wess J., Zumino B., “A $q$-deformed Lorentz algebra”, Ztschr. Phys. C, 52 (1991), 471–476 | DOI | MR | Zbl

[22] Ogievetski O., Schmidke W. B., Wess J., Zumino B., $q$-Deformed Poincaré algebra, Preprints MPI-Ph/91-98, LBL-31703, UCB 92/04 | MR

[23] Chari V., Pressley A. N., A guide to quantum groups, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[24] Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., “Deformation theory and quantization, I”, Ann. Phys., 111 (1978), 61–110 ; “II”, 111–151 | DOI | MR | Zbl | MR | Zbl

[25] Kulish P. P., Mudrov A. I., On twisting solutions to the Yang–Baxter equation, Preprint PDMI 98-31, S.-Peterburg, 1998 ; arXiv: math.QA/9811044 | MR