The Form Factors in a Finite Volume
Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 82-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

The form factors of integrable models in a finite volume are studied. We construct the explicit representations for the form factors in terms of determinants.
@article{TRSPY_1999_226_a6,
     author = {V. E. Korepin and N. A. Slavnov},
     title = {The {Form} {Factors} in a {Finite} {Volume}},
     journal = {Informatics and Automation},
     pages = {82--96},
     publisher = {mathdoc},
     volume = {226},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a6/}
}
TY  - JOUR
AU  - V. E. Korepin
AU  - N. A. Slavnov
TI  - The Form Factors in a Finite Volume
JO  - Informatics and Automation
PY  - 1999
SP  - 82
EP  - 96
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a6/
LA  - ru
ID  - TRSPY_1999_226_a6
ER  - 
%0 Journal Article
%A V. E. Korepin
%A N. A. Slavnov
%T The Form Factors in a Finite Volume
%J Informatics and Automation
%D 1999
%P 82-96
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a6/
%G ru
%F TRSPY_1999_226_a6
V. E. Korepin; N. A. Slavnov. The Form Factors in a Finite Volume. Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 82-96. http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a6/

[1] Sklyanin E. K., Faddeev L. D., “Kvantovomekhanicheskii podkhod k vpolne integriruemym modelyam teorii polya”, DAN SSSR, 243 (1978), 1430–1433

[2] Sklyanin E. K., “Metod obratnoi zadachi rasseyaniya i kvantovoe nelineinoe uravnenie Shrëdingera”, DAN SSSR, 244 (1979), 1337–1341 | MR

[3] Sklyanin E. K., Takhtadzhyan L. A., Faddeev L. D., “Kvantovyi metod obratnoi zadachi, I”, TMF, 40 (1979), 194–220 | MR

[4] Smirnov F. A., Form factors in completely integrable models of quantum field theory, World Sci., Singapore, 1992 | MR

[5] Zamolodchikov A. B., Zamolodchikov Al. B., “Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models”, Ann. Phys., 120 (1979), 253–291 | DOI | MR

[6] Zamolodchikov A. B., “Integrable field theory from conformal field theory”, Integrable systems in quantum field theory and statistical mechanics, Adv. Stud. Pure Math., 19, Academic Press, Boston, MA, 1989, 641–674 | MR

[7] Zamolodchikov A. B., “Integrals of motion in scaling 3-state Potts model”, Intern. J. Mod. Phys. A, 3 (1988), 743–750 | DOI | MR

[8] Arinshtein A. E., Fateyev V. A., Zamolodchikov A. B., “Quantum $S$-matrix of the (1+1)-dimensional Todd chain”, Phys. Lett. B, 87 (1979), 389–392 | DOI

[9] Berg B., Karowski M., Weisz P., “Construction of Green's functions from an exact $S$ matrix”, Phys. Rev. D, 19 (1979), 2477–2479 | DOI

[10] Karowski`M., Weisz P., “Exact form factors in (1+1)-dimensional field theoretic models with soliton behaviour”, Nucl. Phys. B, 139 (1978), 455–476 | DOI | MR

[11] Karowski M., “Exact $S$-matrices and form factors in 1+1-dimensional field theoretic model”, Phys. Rept., 49 (1979), 229–237 | DOI

[12] Zamolodchikov Al. B., “Two-point correlation function in scaling Lee–Yang model”, Nucl. Phys. B, 348 (1991), 619–641 | DOI | MR

[13] Cardi J. L., Mussardo G., “Form factors of descendent operators in perturbed conformal field theories”, Nucl. Phys. B, 340 (1990), 387–402 | DOI | MR

[14] Koubek A., Mussardo G., “On the operator content of the sinh-Gordon model”, Phys. Lett. B, 311 (1993), 193–201 | DOI | MR

[15] Fring A., Mussardo G., Simonetti P., “Form factors for integrable Lagrangian field theories, the sinh-Gordon model”, Nucl. Phys. B, 393 (1993), 413 | DOI | MR

[16] Ahn C., Delfino G., Mussardo G., “Mapping between the sinh-Gordon and Ising models”, Phys. Lett. B, 317 (1993), 573–580 | DOI | MR

[17] Lukyanov S., “Form-factors of exponential fields in the affine $A_{N-1}^{(1)}$ Toda model”, Phys. Lett. B, 408 (1997), 192–200 | DOI | MR | Zbl

[18] Brazhnikov V., Lukyanov S., Form-factors of exponential fields in the affine $A_{N-1}^{(1)}$ Toda model, Preprints RU-97-58, CLNS 97/1488

[19] Balog J., Niedermaier M. R., Hauer T., “Perturbative versus non-perturbative QET lessons from the $O$(3) NLS model”, Phys. Lett. B, 386 (1996), 224–232 | DOI | MR

[20] Niedermaier M. R., “An algebraic approach to form factors”, Nucl. Phys. B, 440 (1995), 603–643 | DOI | MR

[21] Izergin A. G., Korepin V. E., Reshetikhin N. Yu., “Correlation functions in a one-dimensional Bose gas”, J. Phys. A, 20 (1987), 4799–4822 | DOI | MR

[22] Korepin V. E., “Calculation of norms of Bethe wave functions”, Commun. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl

[23] Izergin A. G., Korepin V. E., “Correlation functions for the Heisenberg $XXZ$-antiferromagnet”, Commun. Math. Phys., 99 (1985), 271–302 | DOI | MR | Zbl

[24] Korepin V. E., “Dual field formulation of quantum integrable models”, Commun. Math. Phys., 113 (1987), 177–190 | DOI | MR | Zbl

[25] Slavnov N. A., “Vychislenie skalyarnykh proizvedenii volnovykh funktsii i formfaktorov v ramkakh algebraicheskogo anzatsa Bete”, TMF, 79 (1989), 232–240 | MR

[26] Slavnov N. A., “Ob odnom tozhdestve dlya dualnykh polei”, Zap. nauch. sem. POMI, 245, 1997, 270–281 | MR | Zbl

[27] Kojima T., Korepin V. E., Slavnov N. A., “Determinant representation for dynamical correlation function of the quantum nonlinear Schrödinger equation”, Commun. Math. Phys., 188 (1997), 657–689 | DOI | MR | Zbl

[28] Kirillov A. N., Smirnov F. A., “Form factors in O(3) nonlinear $\sigma$-model”, Intern. J. Mod. Phys. A, 3 (1988), 731–741 | DOI | MR

[29] Kirillov A. N., Smirnov F. A., “Reshenie nekotorykh kombinatornykh problem, voznikayuschikh pri vychislenii korrelyatorov v tochno reshaemykh modelyakh”, Zap. nauch. sem. LOMI, 164, 1987, 67–79 | MR

[30] Maillet J. M., Sanchez de Santos J., Drinfel'd twists and algebraic Bethe ansatz, Preprint, 1996; arXiv: q-alg/9612012

[31] Kitanine N. A., Maillet J. M., Terras V., Form factors of the ${XXZ}$ Heisenberg spin-1/2 finite chain, Preprint, 1998 ; arXiv: math-ph/9807020 | Zbl