Liouville Central Charge in Quantum Teichm\"uller Theory
Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 72-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the quantum Teichmüller theory based on Penner coordinates, the mapping class groups of punctured surfaces are represented projectively. The case of a genus three surface with one puncture is analyzed explicitly. The projective factor is calculated. It is given by the exponential of the Liouville central charge.
@article{TRSPY_1999_226_a5,
     author = {R. M. Kashaev},
     title = {Liouville {Central} {Charge} in {Quantum} {Teichm\"uller} {Theory}},
     journal = {Informatics and Automation},
     pages = {72--81},
     publisher = {mathdoc},
     volume = {226},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a5/}
}
TY  - JOUR
AU  - R. M. Kashaev
TI  - Liouville Central Charge in Quantum Teichm\"uller Theory
JO  - Informatics and Automation
PY  - 1999
SP  - 72
EP  - 81
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a5/
LA  - ru
ID  - TRSPY_1999_226_a5
ER  - 
%0 Journal Article
%A R. M. Kashaev
%T Liouville Central Charge in Quantum Teichm\"uller Theory
%J Informatics and Automation
%D 1999
%P 72-81
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a5/
%G ru
%F TRSPY_1999_226_a5
R. M. Kashaev. Liouville Central Charge in Quantum Teichm\"uller Theory. Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 72-81. http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a5/

[1] Achúcarro A., Townsend P. K., “A Chern–Simons action for three-dimensional anti-de Sitter supergravity theories”, Phys. Lett. B, 180 (1986), 89–92 | DOI | MR

[2] Carlip S., “Inducing Liouville theory from topologically massive gravity”, Nucl. Phys. B, 362 (1991), 111–124 | DOI | MR

[3] Coussaert O., Henneaux M., van Driel P., “The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant”, Class. and Quant. Grav., 12 (1995), 2961–2966 ; arXiv: gr-qc/9506019 | DOI | MR | Zbl

[4] Dehn M., Papers on group theory and topology, ed. J. Stillwell, Springer-Verl., Berlin–New York, 1987 | MR

[5] Faddeev L. D., “Discrete Heisenberg–Weyl group and modular group”, Lett. Math. Phys., 34 (1995), 249–254 ; arXiv: hep-th/9504111 | DOI | MR | Zbl

[6] Faddeev L. D., Volkov A. Yu., “Hirota equation as an example of integrable symplectic map”, Lett. Math. Phys., 32 (1994), 125–136 ; arXiv: hep-th/9405087 | DOI | MR

[7] Fock V., Dual Teichmüller spaces, Preprint ITEP-TH-5-96

[8] Fok V., Chekhov L., “Kvantovye modulyarnye preobrazovaniya, sootnoshenie pyatiugolnika i geodezicheskie”, Tr. MIAN, 226, 1999, 163–179 | MR

[9] Friedan D., Shenker S., “The analytic geometry of two-dimensional conformal field theory”, Nucl. Phys. B, 281 (1987), 509–545 | DOI | MR

[10] Gervais S., “Presentation and central extensions of mapping class groups”, Trans. Amer. Math. Soc., 348 (1996), 3097–3132 | DOI | MR | Zbl

[11] Johnson D., “Homeomorphisms of a surface which act trivially on homology”, Proc. Amer. Math. Soc., 75 (1979), 119–125 | DOI | MR | Zbl

[12] Kashaev R. M., “Quantization of Teichmüller spaces and the quantum dilogarithm”, Lett. Math. Phys., 43:2 (1998), 105–115 ; arXiv: q-alg/9705021 | DOI | MR | Zbl

[13] Luo F., A presentation of the mapping class groups, Preprint, 1998 ; arXiv: math.GT/9801025 | MR

[14] Moore G., Seiberg N., “Classical and quantum conformal field theory”, Commun. Math. Phys., 123 (1989), 177–254 | DOI | MR | Zbl

[15] Penner R. C., “The decorated Teichmüller space of punctured surfaces”, Commun. Math. Phys., 113 (1987), 299–339 | DOI | MR | Zbl

[16] Verlinde H., “Conformal field theory”, Nucl. Phys. B, 337 (1990), 652–680 | DOI | MR

[17] Witten E., “2+1-dimensional gravity as an exactly soluble system”, Nucl. Phys. B, 311 (1988), 46–78 | DOI | MR