B\"acklund and Darboux Transformations for the Nonstationary Schr\"odinger Equation
Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 49-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

Potentials of the nonstationary Schrödinger operator constructed by means of $n$ recursive Bäcklund transformations are studied in detail. The corresponding Darboux transformations of the Jost solutions are introduced. We show that these solutions obey modified integral equations and present their analyticity properties. Generated transformations of the spectral data are derived.
@article{TRSPY_1999_226_a4,
     author = {M. Boiti and F. Pempinelli and A. K. Pogrebkov and B. Prinari},
     title = {B\"acklund and {Darboux} {Transformations} for the {Nonstationary} {Schr\"odinger} {Equation}},
     journal = {Informatics and Automation},
     pages = {49--71},
     publisher = {mathdoc},
     volume = {226},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a4/}
}
TY  - JOUR
AU  - M. Boiti
AU  - F. Pempinelli
AU  - A. K. Pogrebkov
AU  - B. Prinari
TI  - B\"acklund and Darboux Transformations for the Nonstationary Schr\"odinger Equation
JO  - Informatics and Automation
PY  - 1999
SP  - 49
EP  - 71
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a4/
LA  - ru
ID  - TRSPY_1999_226_a4
ER  - 
%0 Journal Article
%A M. Boiti
%A F. Pempinelli
%A A. K. Pogrebkov
%A B. Prinari
%T B\"acklund and Darboux Transformations for the Nonstationary Schr\"odinger Equation
%J Informatics and Automation
%D 1999
%P 49-71
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a4/
%G ru
%F TRSPY_1999_226_a4
M. Boiti; F. Pempinelli; A. K. Pogrebkov; B. Prinari. B\"acklund and Darboux Transformations for the Nonstationary Schr\"odinger Equation. Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 49-71. http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a4/

[1] Boiti M., Pempinelli F., Pogrebkov A. K., Polivanov M. C., “Resolvent approach for two-dimensional scattering problems. Application to the nonstationary Schrödinger problem and KP I equation”, TMF, 93 (1992), 181–210 | MR | Zbl

[2] Boiti M., Pempinelli F., Pogrebkov A. K., “Some new methods and results in the theory of (2+1)-dimensional integrable equations”, TMF, 99 (1994), 185–200 | MR | Zbl

[3] Boiti M., Pempinelli F., Pogrebkov A. K., “Spectral theory of solitons on a generic background for the KP I equation”, Nonlinear physics. Theory and experiment, eds. E. Alfinito, M. Boiti, L. Martina, F. Pempinelli, World Sci., Singapore, 1996, 37 | MR | Zbl

[4] Boiti M., Pempinelli F., Pogrebkov A. K., “Solving the Kadomtsev–Petviashvili equation with initial data not vanishing at large distances”, Inverse Probl., 13 (1997), L7–L10 | DOI | MR | Zbl

[5] Boiti M., Pempinelli F., Pogrebkov A. K., Prinari B., “K teorii obratnoi zadachi rasseyaniya dlya dvumernykh neubyvayuschikh potentsialov”, TMF, 116 (1998), 3–53 | MR | Zbl

[6] Dryuma V. S., “Ob analiticheskom reshenii dvumernogo uravneniya Kortevega–de Vriza (KDV)”, Pisma v ZhETF, 19 (1974), 753–755

[7] Zakharov V. E., Shabat A. B., “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya, I”, Funkts. analiz i ego pril., 8:3 (1974), 43–53 | MR | Zbl

[8] Kadomtsev B. B., Petviashvili V. I., “Ob ustoichivosti uedinennykh voln v slabo dispergiruyuschikh sredakh”, DAN SSSR, 192 (1970), 753–756 | Zbl

[9] Boiti M., Léon J.J.-P., Martina L., Pempinelli F., “Scattering of localized solitons in the plane”, Phys. Lett. A, 132 (1988), 432–439 | DOI | MR

[10] Boiti M., Martina L., Pempinelli F., “Multidimensional localized solitons”, Chaos, Solitons and Fractals, 5 (1995), 2377–2417 | DOI | MR | Zbl

[11] Zakharov V. E., Manakov S. V., “Soliton theory”, Sov. Sci. Rev. A: Phys. Rev., 1 (1979), 133–190 | MR

[12] Manakov S. V., “The inverse scattering transform for the time-dependent Schrödinger equation and Kadomtsev–Petviashvili equation”, Physica D, 3 (1981), 420–427 | DOI | MR

[13] Fokas A. S., Ablowitz M. J., “On the inverse scattering of the time-dependent Schrödinger equation and the associated Kadomtsev–Petviashvili (I) equation”, Stud. Appl. Math., 69 (1983), 211–228 | MR | Zbl

[14] Boiti M., Léon J.J.-P., Pempinelli F., “Spectral transform and orthogonality relations for the Kadomtsev–Petviashvili equation”, Phys. Lett. A, 141 (1989), 96–100 | DOI | MR

[15] Ablowitz M. J., Clarkson P. A., Solitons, nonlinear evolution equations and inverse scattering, Lect. Notes Ser., 49, Cambridge Univ. Press., Cambridge, 1991 | MR

[16] Boiti M., Pempinelli F., Pogrebkov A. K., Polivanov M. C., “Resolvent approach for the non-stationary Schrödinger equation”, Inverse Probl., 8 (1992), 331–364 | DOI | MR | Zbl

[17] Boiti M., Pempinelli F., Pogrebkov A. K., “Solutions of the KP I equation with smooth initial data”, Inverse Probl., 10 (1994), 505–519 | DOI | MR | Zbl

[18] Boiti M., Pempinelli F., Pogrebkov A. K., “Properties of solutions of the Kadomtsev–Petviashvili I equation”, J. Math. Phys., 35 (1994), 4683–4718 | DOI | MR | Zbl

[19] Xin Zhou, “Inverse scattering transform for the time dependent Schrödinger equation with applications to the KPI equation”, Commun. Math. Phys., 128 (1990), 551–564 | DOI | MR | Zbl

[20] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR

[21] Manakov S. V., Zakharov V. E., Bordag L. A., Its A. R., Matveev V. B., “Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction”, Phys. Lett. A, 63 (1977), 205–206 | DOI

[22] Dubrovin B. A., Malanyuk T. M., Krichever I. M., Makhankov V. G., “Tochnye resheniya nestatsionarnogo uravneniya Shrëdingera s samosoglasovannymi potentsialami”, EChAYa, 19:3 (1988), 579–621 | MR

[23] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer, Berlin, 1991 | MR

[24] Sall M. A., Metod preobrazovanii Darbu v teorii solitonov, Kand. dis., Leningrad, 1983

[25] Boiti M., Pempinelli F., Pogrebkov A. K., Polivanov M. C., “New features of Bäcklund and Darboux transformations in 2+1 dimensions”, Inverse Probl., 7 (1991), 43–56 | DOI | MR | Zbl