The Probabilities of Survival and Hopping of States in the Phase Model on a~Finite Lattice
Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 36-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

Explicit expressions for the probability of darkness formation are obtained in the model of strongly correlated bosons on a finite lattice. The probabilities of survival and hopping of the Fock states are considered.
@article{TRSPY_1999_226_a3,
     author = {N. M. Bogolyubov and A. G. Izergin and A. L. Kitanin and A. G. Pronko},
     title = {The {Probabilities} of {Survival} and {Hopping} of {States} in the {Phase} {Model} on {a~Finite} {Lattice}},
     journal = {Informatics and Automation},
     pages = {36--48},
     publisher = {mathdoc},
     volume = {226},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a3/}
}
TY  - JOUR
AU  - N. M. Bogolyubov
AU  - A. G. Izergin
AU  - A. L. Kitanin
AU  - A. G. Pronko
TI  - The Probabilities of Survival and Hopping of States in the Phase Model on a~Finite Lattice
JO  - Informatics and Automation
PY  - 1999
SP  - 36
EP  - 48
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a3/
LA  - ru
ID  - TRSPY_1999_226_a3
ER  - 
%0 Journal Article
%A N. M. Bogolyubov
%A A. G. Izergin
%A A. L. Kitanin
%A A. G. Pronko
%T The Probabilities of Survival and Hopping of States in the Phase Model on a~Finite Lattice
%J Informatics and Automation
%D 1999
%P 36-48
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a3/
%G ru
%F TRSPY_1999_226_a3
N. M. Bogolyubov; A. G. Izergin; A. L. Kitanin; A. G. Pronko. The Probabilities of Survival and Hopping of States in the Phase Model on a~Finite Lattice. Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 36-48. http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a3/

[1] Sov. Sci. Rev. C: Math. Phys. Rev., 1 (1980), 107–155 | Zbl

[2] Sklyanin E. K., Faddeev L. D., “Kvantovo-mekhanicheskii podkhod k vpolne integriruemym modelyam teorii polya”, DAN SSSR, 243 (1978), 1430–1433

[3] Takhtadzhyan L. A., Faddeev L. D., “Kvantovyi metod obratnoi zadachi i $XYZ$ model Geizenberga”, UMN, 34:5 (1979), 13–63 | MR

[4] Sklyanin E. K., Takhtadzhyan L. A., Faddeev L. D., “Kvantovyi metod obratnoi zadachi, I”, TMF, 40 (1979), 194–220 | MR

[5] Bogolyubov N. M., Izergin A. G., Korepin V. E., Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, ed. L. D. Faddeev, Nauka, M., 1992, 240 pp. | MR | Zbl

[6] Korepin V. E., Bogoliubov N. M., Izergin A. G., Quantum inverse scattering method and correlation functions, Cambridge Univ. Press, Cambridge, 1993, 555 pp. | MR | Zbl

[7] Popov V. N., Faddeev L. D., “Ob odnom podkhode k teorii boze-gaza”, ZhETF, 47 (1964), 1315–1321 | MR

[8] Lenard A., “Momentum distribution in the ground state of the one-dimensional system of impenetrable bosons”, J. Math. Phys., 5 (1964), 930–943 | DOI | MR

[9] Lenard A., “One-dimensional impenetrable bosons in thermal equilibrium”, J. Math. Phys., 7 (1966), 1268–1272 | DOI | MR

[10] Korepin V. E., “Dual field formulation of quantum integrable models”, Commun. Math. Phys., 113 (1987), 177–190 | DOI | MR | Zbl

[11] Kojima T., Korepin V., Slavnov N., “Determinant representation for dynamical correlation function of the quantum nonlinear Schrödinger equation”, Commun. Math. Phys., 188 (1997), 657–689 | DOI | MR | Zbl

[12] Korepin V. E., Slavnov N. A., “The time dependent correlation function of an impenetrable Bose gas as a Fredholm minor, I”, Commun. Math. Phys., 129 (1990), 103–113 | DOI | MR | Zbl

[13] Colomo F., Izergin A. G., Korepin V. E., Tognetti V., “Correlators in the Heisenberg $XX0$ chain as Fredholm determinants”, Phys. Lett. A, 169 (1992), 243–247 | DOI | MR

[14] Colomo F., Izergin A. G., Korepin V. E., Tognetti V., “Temperature correlation functions of the $XX0$ Heisenberg chain, I”, TMF, 94 (1993), 19–51 | MR

[15] Izergin A. G., Pronko A. G., “Temperature correlators in the two-component one-dimensional gas”, Nucl. Phys. B, 520 (1998), 594–632 | DOI | MR | Zbl

[16] Izergin A. G., Pronko A. G., Abarenkova N. I., “Temperature correlators in the one-dimensional Hubbard model in the strong coupling limit”, Phys. Lett. A, 245 (1998), 537–547 | DOI

[17] Bogoliubov N. M., Izergin A. G., Kitanine N. A., “Correlators of the phase model”, Phys. Lett. A, 231 (1997), 347–352 | DOI | MR | Zbl

[18] Bogoliubov N. M., Izergin A. G., Kitanine N. A., “Correlation functions for a strongly correlated boson system”, Nucl. Phys. B, 516 (1998), 501–528 | DOI | MR | Zbl

[19] Kitanin N. A., “Form-faktory modeli $q$-bozonov v predele kristallizatsii”, Zap. nauch. sem. POMI, 245, 1997, 231–246 | MR | Zbl

[20] Kulish P. P., Damaskinsky E. V., “On the $q$ oscillator and the quantum algebra su$_q$(1,1)”, J. Phys. A, 23 (1990), L415–L419 | DOI | MR | Zbl

[21] Kulish P. P., “Kontsentratsiya kvantovykh algebr i $q$-ostsillyatory”, TMF, 86 (1991), 157–160 | MR | Zbl

[22] Kulish P. P., “Quantum difference nonlinear Schrödinger equation”, Lett. Math. Phys., 5 (1981), 191–197 | DOI | MR | Zbl

[23] Ablowitz M. J., Ladik J. F., “Nonlinear differential-difference equations and Fourier analysis”, J. Math. Phys., 17 (1976), 1011–1018 | DOI | MR | Zbl

[24] Bogoliubov N. M., Bullough R. K., Pang G. D., “Exact solution of a $q$-boson hopping model”, Phys. Rev. B, 47 (1993), 11495–11498 | DOI

[25] Bogoliubov N. M., Bullough R. K., “A $q$-deformed completely integrable Bose gas model”, J. Phys. A, 25 (1992), 4057 | DOI | MR | Zbl

[26] Bullough R. K., Bogoliubov N. M., Pang G. D., Timonen J., “Quantum repulsive nonlinear Schrödinger models and their “superconductivity””, Chaos Solitons Fractals, 5 Solitons in science and engineering: theory and applications:12 (1995), 2639–2656 | DOI | MR | Zbl

[27] Bogoliubov N. M., Bullough R. K., Timonen J., “Critical behavior for correlated strongly coupled boson systems in $\operatorname{1+1}$ dimensions”, Phys. Rev. Lett., 72 (1994), 3933–3936 | DOI | MR | Zbl

[28] Anderson M. H., Ensher J. R., Matthews M. R., Wieman C. E., Cornell E. A., “Observation of Bose–Einstein condensation in a dilute atomic vapor”, Science, 269 (1995), 198–201 | DOI

[29] Imamoglu A., Lewenstein M., You L., “Inhibition of coherence in trapped Bose–Einstein condensates”, Phys. Rev. Lett., 78 (1997), 2511–2514 | DOI

[30] Mewes M.-O., Andrews M. R., Kurn D. M., Durfee D. S., Townsend C. G., Ketterle W., “Output coupler for Bose–Einstein condensed atoms”, Phys. Rev. Lett., 78 (1997), 582–585 | DOI

[31] Wright E. M., Walls D. F., Garrison J. C., “Collapses and revivals of Bose–Einstein condensates formed in small atomic samples”, Phys. Rev. Lett., 77 (1996), 2158–2161 | DOI

[32] Lewenstein M., You L., “Quantum phase diffusion of a Bose–Einstein condensate”, Phys. Rev. Lett., 77 (1996), 3489–3493 | DOI

[33] Castin Y., Dalibard J., “Relative plane of two Bose–Einstein condensates”, Phys. Rev. A, 55 (1997), 4330–4337 | DOI

[34] Carruthers P., Nieto M., “Coherent states and the number-phase uncertainty relation”, Phys. Rev. Lett., 14 (1965), 387–389 | DOI | MR | Zbl