Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_1999_226_a2, author = {V. I. Arnol'd}, title = {Simple {Singularities} of {Curves}}, journal = {Informatics and Automation}, pages = {27--35}, publisher = {mathdoc}, volume = {226}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a2/} }
V. I. Arnol'd. Simple Singularities of Curves. Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 27-35. http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a2/
[1] Bruce J. W., Gaffney T., “Simple singularities of maps $(\mathbb C,0)\to (\mathbb C^2,0)$”, J. London Math. Soc. (2), 26 (1982), 464–474 | MR
[2] Kunz E., “The value semigroup of a one-dimension Gorenstein ring”, Proc. Amer. Math. Soc., 25 (1970), 748–751 | DOI | MR | Zbl
[3] Sylvester J. J., “Mathematical questions with their solutions”, Educ. Times, 41 (1884), 21
[4] Buchweitz R.-O., Greuel G.-M., “The Milnor number and deformations of complex curves singularities”, Invent. math., 58 (1980), 241–281 | DOI | MR | Zbl
[5] Arnold V. I., “Spectral sequences for the reduction of functions to a normal form”, Sel. Math. Sov., 1 (1981), 3–18
[6] Mather J., “Stability of $C^\infty$ mappings, VI”, Proc. Liverpool Conf. on Singularities, Part I, Lect. Notes Math., 192, Springer-Verl., Berlin etc., 1971, 207–253 ; UMN, 29:1 (1974), 99–128 | MR | MR | Zbl
[7] Gibson C. G., Hobbs C. A., “Simple singularities of space curves”, Math. Proc. Cambridge Phil. Soc., 113 (1993), 297–310 | DOI | MR | Zbl