Interacting Knots
Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 232-239.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study geometrical aspects of the interaction of knotlike solitons in the Faddeev model. We argue that the splitting and joining of two solitons is a local process governed by a four-point vertex. The interaction preserves the linking number but in general both the twist and the writhe can change, which suggests that supercoiled states will be present.
@article{TRSPY_1999_226_a18,
     author = {A. J. Niemi},
     title = {Interacting {Knots}},
     journal = {Informatics and Automation},
     pages = {232--239},
     publisher = {mathdoc},
     volume = {226},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a18/}
}
TY  - JOUR
AU  - A. J. Niemi
TI  - Interacting Knots
JO  - Informatics and Automation
PY  - 1999
SP  - 232
EP  - 239
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a18/
LA  - en
ID  - TRSPY_1999_226_a18
ER  - 
%0 Journal Article
%A A. J. Niemi
%T Interacting Knots
%J Informatics and Automation
%D 1999
%P 232-239
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a18/
%G en
%F TRSPY_1999_226_a18
A. J. Niemi. Interacting Knots. Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 232-239. http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a18/

[1] Thomson W., “On vortex motion”, Trans. Roy. Soc. Edinbourgh, 25 (1869), 217–260

[2] Faddeev L., Quantization of solitons, Preprint IAS Print-75-QS70, 1975 | MR

[3] Faddeev L., “Einstein and several contemporary tendencies in the field theory of elementary particles”, Relativity, quanta and cosmology, v. 1, eds. M. Pantaleo, F. De Finis, Johnson Reprint, 1979 | MR

[4] Makhankov V. D., Rybakov Y. P., Sanyuk V. I., The Skyrme model: fundamentals, methods, applications, Springer-Verl., Berlin etc., 1993 | MR

[5] Faddeev L., Niemi A. J., “Stable knot-like structures in classical field theory”, Nature, 387 (1997), 58–61 | DOI

[6] Battye R., Sutcliffe P., Solitons, links and knots, Preprint, 1998 ; arXiv: hep-th/9811077 | MR | Zbl

[7] Hietarinta J., Salo P., Faddeev–Hopf knots: Dynamics of linked un-knots, Preprint, 1998 ; arXiv: hep-th/9811053 | MR | Zbl

[8] Atiyah M., The geometry and physics of knots, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[9] Kauffman L. H., Knots and physics, World Sci., Singapore, 1993 | MR

[10] Vakulenko A. F., Kapitanskii L. V., “Ustoichivost solitonov v $S^2$ nelineinoi $\sigma$-modeli”, DAN SSSR, 246 (1979), 840–842 | MR | Zbl