Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_1999_226_a18, author = {A. J. Niemi}, title = {Interacting {Knots}}, journal = {Informatics and Automation}, pages = {232--239}, publisher = {mathdoc}, volume = {226}, year = {1999}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a18/} }
A. J. Niemi. Interacting Knots. Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 232-239. http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a18/
[1] Thomson W., “On vortex motion”, Trans. Roy. Soc. Edinbourgh, 25 (1869), 217–260
[2] Faddeev L., Quantization of solitons, Preprint IAS Print-75-QS70, 1975 | MR
[3] Faddeev L., “Einstein and several contemporary tendencies in the field theory of elementary particles”, Relativity, quanta and cosmology, v. 1, eds. M. Pantaleo, F. De Finis, Johnson Reprint, 1979 | MR
[4] Makhankov V. D., Rybakov Y. P., Sanyuk V. I., The Skyrme model: fundamentals, methods, applications, Springer-Verl., Berlin etc., 1993 | MR
[5] Faddeev L., Niemi A. J., “Stable knot-like structures in classical field theory”, Nature, 387 (1997), 58–61 | DOI
[6] Battye R., Sutcliffe P., Solitons, links and knots, Preprint, 1998 ; arXiv: hep-th/9811077 | MR | Zbl
[7] Hietarinta J., Salo P., Faddeev–Hopf knots: Dynamics of linked un-knots, Preprint, 1998 ; arXiv: hep-th/9811053 | MR | Zbl
[8] Atiyah M., The geometry and physics of knots, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[9] Kauffman L. H., Knots and physics, World Sci., Singapore, 1993 | MR
[10] Vakulenko A. F., Kapitanskii L. V., “Ustoichivost solitonov v $S^2$ nelineinoi $\sigma$-modeli”, DAN SSSR, 246 (1979), 840–842 | MR | Zbl