To Gauge Theory from a~Minimum of {\it a~priori\/} structure
Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 223-231.

Voir la notice de l'article provenant de la source Math-Net.Ru

Within a universal framework, where all laws are regularities of relations between things or agents, gauge theories are distinguished by a single structural assumption. It requires unitarity of fundamental relations, $forth\circback=identity$.
@article{TRSPY_1999_226_a17,
     author = {G. Mack},
     title = {To {Gauge} {Theory} from {a~Minimum} of {\it a~priori\/} structure},
     journal = {Informatics and Automation},
     pages = {223--231},
     publisher = {mathdoc},
     volume = {226},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a17/}
}
TY  - JOUR
AU  - G. Mack
TI  - To Gauge Theory from a~Minimum of {\it a~priori\/} structure
JO  - Informatics and Automation
PY  - 1999
SP  - 223
EP  - 231
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a17/
LA  - en
ID  - TRSPY_1999_226_a17
ER  - 
%0 Journal Article
%A G. Mack
%T To Gauge Theory from a~Minimum of {\it a~priori\/} structure
%J Informatics and Automation
%D 1999
%P 223-231
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a17/
%G en
%F TRSPY_1999_226_a17
G. Mack. To Gauge Theory from a~Minimum of {\it a~priori\/} structure. Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 223-231. http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a17/

[1] Faddeev L. D., Slavnov A. A., Gauge fields, Frontiers in Physics, 50, Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, Reading, Mass., 1980 | MR | Zbl

[2] Faddeev L. D., Popov V. N., “Feynmann diagrams for the Yang–Mills field”, Phys. Lett. B, 25 (1967), 29–30 | DOI

[3] Kant I., “Kritik der reinen Vernunft”, Gesammelte Schriften, bd. 4, Reimer, Berlin, 1911

[4] Mack G., Glossary of interdisciplinary systems theory, E-print , 1998 http://lienhard.desy.de/mack/glossary.ps

[5] Mack G., “Pushing Einsteins principles to the extreme”, Quantum fields and quantum space time (Cargèse, 1996), NATO Adv. Sci. Inst. Ser. B Phys., 364, Plenum, New York, 1997, 165–201 | MR | Zbl

[6] Ilinski K., Physics of finance, Preprint, 1997; arXiv: hep-th/9710148

[7] Mack G., “Gauge theory of things alive: Universal dynamics as a tool in parallel computing”, Progr. Theor. Phys. Kyoto. Suppl., 122 (1996), 201 | DOI

[8] Gould R., Graph theory, Benjamin/Cummings, Reading, 1988 | MR | Zbl

[9] Mac Lane S., Categories for the working mathematician, Springer, N. Y. etc., 1971 | MR

[10] Ashtekar A., Lewandowski J., Marlof D., Mourãu J., Thiemann T., Quantum geometrodynamics, Preprint Penn. State Univ., 1994 | MR

[11] Ashtekar A., Lewandowski J., Marlof D., Mourãu J., Thiemann T., Coherent state transforms on the space of connections, Preprint Penn. State Univ., 1994; arXiv: gr-qc/9412014

[12] Waelbroeck H., “$2+1$ lattice gravity”, Class. and Quant. Gravity, 7 (1990), 751–769 | DOI | MR | Zbl

[13] Corichi A., Zapata J. A., On diffeomorphism invariance for lattice theories, Preprint, nov. 1996 ; arXiv: gr-qc/9611034 | MR

[14] Connes A., Lott J., “Particle models and noncommutative geometry”, Nucl. Phys. Proc. Suppl. B, 18 (1991), 29–47, Recent advances in field theory (Annecy-le-Vieux, 1990) | DOI | MR

[15] Connes A., Lott J., Proc. Cargèse Summer School, 1991, eds. J. Fröhlich et al., Plenum Press, N. Y., 1992 | MR

[16] Frampton P. H., Glashow S. L., “Unifiable chiral color with natural Glashow–Iliopoulos–Maiani mechanism”, Phys. Rev. Lett., 58 (1987), 2168–2170 | DOI

[17] Donecheski M. A., Robinett R. W., Eliminating the low-mass axigluon window, Preprint PSU/TH/197, apr. 1998 | MR