Physicomathematical Interactions: The Chern--Simons Story
Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 180-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

The essential role played by Chern–Simons terms in a variety of physical models provides yet another illustration of the unexpected but profound interactions between the two disciplines.
@article{TRSPY_1999_226_a13,
     author = {S. Deser},
     title = {Physicomathematical {Interactions:} {The} {Chern--Simons} {Story}},
     journal = {Informatics and Automation},
     pages = {180--184},
     publisher = {mathdoc},
     volume = {226},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a13/}
}
TY  - JOUR
AU  - S. Deser
TI  - Physicomathematical Interactions: The Chern--Simons Story
JO  - Informatics and Automation
PY  - 1999
SP  - 180
EP  - 184
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a13/
LA  - en
ID  - TRSPY_1999_226_a13
ER  - 
%0 Journal Article
%A S. Deser
%T Physicomathematical Interactions: The Chern--Simons Story
%J Informatics and Automation
%D 1999
%P 180-184
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a13/
%G en
%F TRSPY_1999_226_a13
S. Deser. Physicomathematical Interactions: The Chern--Simons Story. Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 180-184. http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a13/

[1] Chern S.-S., Simons J., “Characteristic forms and geometric invariants”, Ann. Math., 99 (1974), 48–69 | DOI | MR | Zbl

[2] Witten E., “Quantum field theory and the Jones polynomial”, Commun. Math. Phys., 121 (1989), 351–399 | DOI | MR | Zbl

[3] Current algebra and anomalies, World Sci., Singapore, 1985

[4] Dunne G., Selfdual Chern–Simons theories, Lect. Notes Phys., 36, Springer, N. Y. etc., 1995 | MR

[5] Cremmer E., Julia B., Scherk J., “Supergravity theory in 11 dimensions”, Phys. Lett. B, 76 (1978), 409–411 | DOI

[6] Supergravities in diverse dimensions, eds. A. Salam, E. Sezgin, World Sci., Singapore, 1989

[7] Bern Z., Dixon L., Dunbar D. C., Perelstein M., Rozowski J. S., “On the relationship between Yang–Mills theory and gravity and its implication for ultraviolet divergences”, Nucl. Phys. B, 530 (1998), 401–456 ; arXiv: hep-th/9802162 | DOI

[8] Siegel W., “Unextended superfields in extended supersymmetry”, Nucl. Phys. B, 156 (1979), 135–143 | DOI | MR

[9] Jackiw R., Templeton S., “How super-renormalizable interactions cure their infrared divergences”, Phys. Rev. D, 23 (1981), 2291–2304 | DOI

[10] Schonfeld J., “A mass term for three-dimensional gauge fields”, Nucl. Phys. B, 185 (1981), 157–171 | DOI

[11] Deser S., Jackiw R., Templeton S., “Topologically massive gauge theories”, Ann. Phys., 140 (1982), 372–411 | DOI | MR

[12] Deser S., Jackiw R., 't Hooft G., “Three-dimensional Einstein gravity: Dynamics of flat space”, Ann. Phys., 152 (1984), 220–235 | DOI | MR

[13] Deser S., Jackiw R., “Three-dimensional cosmological gravity: Dynamics of constant curvature”, Ann. Phys., 153 (1984), 405–416 | DOI | MR

[14] Achúcarro A., Townsend P. K., “A Chern–Simons action for three-dimensional anti-de Sitter supergravity theories”, Phys. Lett. B, 180 (1986), 89–92 | DOI | MR

[15] Witten E., “2+1-dimensional gravity as an exactly soluble system”, Nucl. Phys. B, 311 (1988), 46–78 | DOI | MR

[16] Carlip S., Lectures in (2+1)-dimensional gravity, Preprint UCD-95-6, 1995; arXiv: gr-qc/9503024

[17] Bellini A., Ciafaloni M., Valtancoli P., “Solving the $N$-body problem in (2+1) gravity”, Nucl. Phys. B, 462 (1996), 453–492 | DOI | MR

[18] Welling M., “Gravity in 2+1 dimensions as a Riemann–Hilbert problem”, Class. and Quant. Gravity, 13 (1996), 653–679 | DOI | MR | Zbl

[19] Deser S., “Gravitational anyons”, Phys. Rev. Lett., 64 (1990), 611–614 | DOI | MR | Zbl

[20] Deser S., McCarthy J. G., “Spin and statistics of gravitational anyons”, Nucl. Phys. B, 344 (1990), 747–762 | DOI | MR

[21] Deser S., Yang Z., “Is topologically massive gravity renormalizable?”, Class. and Quant. Gravity, 7 (1990), 1603–1612 | DOI | MR

[22] Damour T., Deser S., ““Geometry” of spin 3 gauge theories”, Ann. Inst. H. Poincaré, 47 (1987), 277–307 | MR | Zbl

[23] Deser S., Yang Z., “A remark on the Higgs effect in presence of Chern–Simons terms”, Mod. Phys. Lett. A, 4 (1989), 2123–2124 | DOI | MR

[24] Binegar B., “Relativistic field theories in three dimensions”, J. Math. Phys., 23 (1982), 1511–1517 | DOI | MR

[25] Deser S., Jackiw R., “Statistics without spin. Massless $D=3$ systems”, Phys. Lett. B, 263 (1991), 431–436 | DOI | MR

[26] Leinaas J. M., Myrheim J., “On the theory of identical particles”, Nuovo Cim. B, 37 (1977), 1–23 | DOI

[27] Arovas D. P., Schrieffer R., Wilczek F., Zee A., “Statistical mechanics of anyons”, Nucl. Phys. B, 251 (1985), 117–126 | DOI | MR

[28] Deser S., Griguolo L., Seminara D., “Gauge invariance, finite temperature, and parity anomaly in $D=3$”, Phys. Rev. Lett., 79 (1997), 1976–1979 | DOI | MR | Zbl

[29] Deser S., Griguolo L., Seminara D., “Effective QED actions: Representations, gauge invariance, anomalies and mass expansions”, Phys. Rev. D, 57 (1998), 7444–7459 ; arXiv: hep-th/9712066 | DOI

[30] Deser S., Griguolo L., Seminara D., “Definition of Chern–Simons terms in thermal QED$_3$ revisited”, Commun. Math. Phys., 197 (1998), 443 ; arXiv: hep-th/9712132 | DOI | MR | Zbl