Quantum Mapping Class Group, Pentagon Relation, and Geodesics
Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 163-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mapping class group transformations that satisfy the pentagon relation are constructed for classical and quantum Teichmüller spaces coordinatized in terms of graphs. Classical and quantum geodesic algebras governed by the skein relations are discussed.
@article{TRSPY_1999_226_a12,
     author = {V. V. Fock and L. O. Chekhov},
     title = {Quantum {Mapping} {Class} {Group,} {Pentagon} {Relation,} and {Geodesics}},
     journal = {Informatics and Automation},
     pages = {163--179},
     publisher = {mathdoc},
     volume = {226},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a12/}
}
TY  - JOUR
AU  - V. V. Fock
AU  - L. O. Chekhov
TI  - Quantum Mapping Class Group, Pentagon Relation, and Geodesics
JO  - Informatics and Automation
PY  - 1999
SP  - 163
EP  - 179
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a12/
LA  - ru
ID  - TRSPY_1999_226_a12
ER  - 
%0 Journal Article
%A V. V. Fock
%A L. O. Chekhov
%T Quantum Mapping Class Group, Pentagon Relation, and Geodesics
%J Informatics and Automation
%D 1999
%P 163-179
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a12/
%G ru
%F TRSPY_1999_226_a12
V. V. Fock; L. O. Chekhov. Quantum Mapping Class Group, Pentagon Relation, and Geodesics. Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 163-179. http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a12/

[1] Verlinde E., Verlinde H., “Conformal field theory and geometric quantization”, Superstrings'89 (Trieste, 1989), World Sci. Publ., River Edge, NJ, 1990, 422–449 | MR | Zbl

[2] Fock V. V., Rosly A. A., Poisson structures on moduli of flat connections on Riemann surfaces and $r$-matrices, Preprint ITEP 72-92, 1992

[3] Fock V. V., Rosly A. A., “Flat connections and poluybles”, TMF, 95 (1993), 228–238 | MR | Zbl

[4] Penner R. C., “The decorated Teichmüller space of Riemann surfaces”, Commun. Math. Phys., 113 (1988), 299–339 | DOI | MR

[5] Kontsevich M., “Intersection theory on the moduli space of curves and the matrix Airy function”, Commun. Math. Phys., 147 (1992), 1–23 | DOI | MR | Zbl

[6] Faddeev L. D., “Discrete Heisenberg–Weyl group and modular group”, Lett. Math. Phys., 34 (1995), 249–254 | DOI | MR | Zbl

[7] Kashaev R. M., Quantization of Teichmüller spaces and the quantum dilogarithm, Preprint, 1997 ; arXiv: q-alg/9705021 | MR

[8] Strebel K., Quadratic differentials, Springer, N. Y. etc., 1984 | MR

[9] Fock V. V., Combinatorial description of the moduli space of projective structures, Preprint, 1993 ; arXiv: hep-th/9312193 | Zbl

[10] Goldman W. M., “Invariant functions on Lie groups and Hamiltonian flows of surface group representations”, Invent. math., 85 (1986), 263–302 | DOI | MR | Zbl

[11] Fock V., Chekhov L., “Quantum mapping class group transformations”, St. Petersburg Meeting on Selected Topics in Mathematical Physics (POMI, 26–29 May 1997 \), report

[12] Havlíček M., Klimyk A. V., Pošta ., Representations of the cyclically symmetric $q$-deformed algebra $so_q(3)$, Preprint, 1998; arXiv: math.qa/9805048

[13] Turaev V. G., “Skein quantization of Poisson algebras of loops on surfaces”, Ann. Sci. École Norm. Super., ser. 4, 24 (1991), 635–704 | MR | Zbl

[14] Bullock D., Przytycki J. H., Multiplicative structure of Kauffman bracket skein module quantizations, Preprint, 1999 ; arXiv: math.QA/9902117 | MR

[15] Bondal A., A symplectic groupoid of bilinear forms, braid groups, and Poisson–Lie groups, Preprint MIAN, 1999

[16] Kashaev R. M., “Tsentralnyi zaryad Liuvillya v kvantovoi teorii Teikhmyullera”, Tr.MIAN, 226, 1999, 72–81 | MR | Zbl