Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_1999_226_a12, author = {V. V. Fock and L. O. Chekhov}, title = {Quantum {Mapping} {Class} {Group,} {Pentagon} {Relation,} and {Geodesics}}, journal = {Informatics and Automation}, pages = {163--179}, publisher = {mathdoc}, volume = {226}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a12/} }
V. V. Fock; L. O. Chekhov. Quantum Mapping Class Group, Pentagon Relation, and Geodesics. Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 163-179. http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a12/
[1] Verlinde E., Verlinde H., “Conformal field theory and geometric quantization”, Superstrings'89 (Trieste, 1989), World Sci. Publ., River Edge, NJ, 1990, 422–449 | MR | Zbl
[2] Fock V. V., Rosly A. A., Poisson structures on moduli of flat connections on Riemann surfaces and $r$-matrices, Preprint ITEP 72-92, 1992
[3] Fock V. V., Rosly A. A., “Flat connections and poluybles”, TMF, 95 (1993), 228–238 | MR | Zbl
[4] Penner R. C., “The decorated Teichmüller space of Riemann surfaces”, Commun. Math. Phys., 113 (1988), 299–339 | DOI | MR
[5] Kontsevich M., “Intersection theory on the moduli space of curves and the matrix Airy function”, Commun. Math. Phys., 147 (1992), 1–23 | DOI | MR | Zbl
[6] Faddeev L. D., “Discrete Heisenberg–Weyl group and modular group”, Lett. Math. Phys., 34 (1995), 249–254 | DOI | MR | Zbl
[7] Kashaev R. M., Quantization of Teichmüller spaces and the quantum dilogarithm, Preprint, 1997 ; arXiv: q-alg/9705021 | MR
[8] Strebel K., Quadratic differentials, Springer, N. Y. etc., 1984 | MR
[9] Fock V. V., Combinatorial description of the moduli space of projective structures, Preprint, 1993 ; arXiv: hep-th/9312193 | Zbl
[10] Goldman W. M., “Invariant functions on Lie groups and Hamiltonian flows of surface group representations”, Invent. math., 85 (1986), 263–302 | DOI | MR | Zbl
[11] Fock V., Chekhov L., “Quantum mapping class group transformations”, St. Petersburg Meeting on Selected Topics in Mathematical Physics (POMI, 26–29 May 1997 \), report
[12] Havlíček M., Klimyk A. V., Pošta ., Representations of the cyclically symmetric $q$-deformed algebra $so_q(3)$, Preprint, 1998; arXiv: math.qa/9805048
[13] Turaev V. G., “Skein quantization of Poisson algebras of loops on surfaces”, Ann. Sci. École Norm. Super., ser. 4, 24 (1991), 635–704 | MR | Zbl
[14] Bullock D., Przytycki J. H., Multiplicative structure of Kauffman bracket skein module quantizations, Preprint, 1999 ; arXiv: math.QA/9902117 | MR
[15] Bondal A., A symplectic groupoid of bilinear forms, braid groups, and Poisson–Lie groups, Preprint MIAN, 1999
[16] Kashaev R. M., “Tsentralnyi zaryad Liuvillya v kvantovoi teorii Teikhmyullera”, Tr.MIAN, 226, 1999, 72–81 | MR | Zbl