Combinatorial Identities Related to Representations of $U_q(\widetilde{\mathfrak{gl}_2})$
Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 152-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present certain combinatorial identities related to tensor products of evaluation representations of the quantum loop algebra $U_q(\widetilde{\mathfrak{gl}_2})$ or the elliptic quantum group $E_{\rho,\gamma}(\mathfrak{sl}_2)$. The simplest example of the obtained identities was discovered by N. Jing from the validity of the Serre relations in some vertex representations of quantum Kac–Moody algebras.
@article{TRSPY_1999_226_a11,
     author = {V. O. Tarasov},
     title = {Combinatorial {Identities} {Related} to {Representations} of $U_q(\widetilde{\mathfrak{gl}_2})$},
     journal = {Informatics and Automation},
     pages = {152--162},
     publisher = {mathdoc},
     volume = {226},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a11/}
}
TY  - JOUR
AU  - V. O. Tarasov
TI  - Combinatorial Identities Related to Representations of $U_q(\widetilde{\mathfrak{gl}_2})$
JO  - Informatics and Automation
PY  - 1999
SP  - 152
EP  - 162
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a11/
LA  - ru
ID  - TRSPY_1999_226_a11
ER  - 
%0 Journal Article
%A V. O. Tarasov
%T Combinatorial Identities Related to Representations of $U_q(\widetilde{\mathfrak{gl}_2})$
%J Informatics and Automation
%D 1999
%P 152-162
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a11/
%G ru
%F TRSPY_1999_226_a11
V. O. Tarasov. Combinatorial Identities Related to Representations of $U_q(\widetilde{\mathfrak{gl}_2})$. Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 152-162. http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a11/

[1] Bogolyubov N. M., Izergin A. G., Korepin V. E., Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, ed. red. L. D. Faddeeva, Nauka, Gl. red. fiz.-mat. lit., M., 1992, 240 pp. | MR | Zbl

[2] Jing N., “Quantum Kac–Moody algebras and vertex representations”, Lett. Math. Phys., 44 (1998), 261–271 | DOI | MR | Zbl

[3] Tarasov V., Bilinear identity for $q$-hypergeometric integrals, Preprint, Osaka Univ., 1997 ; Osaka J. Math., 36:2 (1999), 409–436 | MR | Zbl

[4] Tarasov V., Varchenko A., “Geometry of $q$-hypergeometric functions, quantum affine algebras and elliptic quantum groups”, Astérisque, 1997, no. 246, 1–135 | MR

[5] Tarasov V., Varchenko A., “Geometry of $q$-hypergeometric functions as a bridge between Yangians and quantum affine algebras”, Invent. math., 128:3 (1997), 501–588 | DOI | MR | Zbl