Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_1999_226_a11, author = {V. O. Tarasov}, title = {Combinatorial {Identities} {Related} to {Representations} of $U_q(\widetilde{\mathfrak{gl}_2})$}, journal = {Informatics and Automation}, pages = {152--162}, publisher = {mathdoc}, volume = {226}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a11/} }
V. O. Tarasov. Combinatorial Identities Related to Representations of $U_q(\widetilde{\mathfrak{gl}_2})$. Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 152-162. http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a11/
[1] Bogolyubov N. M., Izergin A. G., Korepin V. E., Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, ed. red. L. D. Faddeeva, Nauka, Gl. red. fiz.-mat. lit., M., 1992, 240 pp. | MR | Zbl
[2] Jing N., “Quantum Kac–Moody algebras and vertex representations”, Lett. Math. Phys., 44 (1998), 261–271 | DOI | MR | Zbl
[3] Tarasov V., Bilinear identity for $q$-hypergeometric integrals, Preprint, Osaka Univ., 1997 ; Osaka J. Math., 36:2 (1999), 409–436 | MR | Zbl
[4] Tarasov V., Varchenko A., “Geometry of $q$-hypergeometric functions, quantum affine algebras and elliptic quantum groups”, Astérisque, 1997, no. 246, 1–135 | MR
[5] Tarasov V., Varchenko A., “Geometry of $q$-hypergeometric functions as a bridge between Yangians and quantum affine algebras”, Invent. math., 128:3 (1997), 501–588 | DOI | MR | Zbl