Multifield Formulation of Lattice Gauge Theories
Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 140-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new multifield formulation of lattice gauge theories is proposed. The lattice QCD model is discussed in detail. The model is free of spectrum doubling and preserves all nonanomalous chiral symmetries up to exponentially small corrections.
@article{TRSPY_1999_226_a10,
     author = {A. A. Slavnov},
     title = {Multifield {Formulation} of {Lattice} {Gauge} {Theories}},
     journal = {Informatics and Automation},
     pages = {140--151},
     publisher = {mathdoc},
     volume = {226},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a10/}
}
TY  - JOUR
AU  - A. A. Slavnov
TI  - Multifield Formulation of Lattice Gauge Theories
JO  - Informatics and Automation
PY  - 1999
SP  - 140
EP  - 151
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a10/
LA  - ru
ID  - TRSPY_1999_226_a10
ER  - 
%0 Journal Article
%A A. A. Slavnov
%T Multifield Formulation of Lattice Gauge Theories
%J Informatics and Automation
%D 1999
%P 140-151
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a10/
%G ru
%F TRSPY_1999_226_a10
A. A. Slavnov. Multifield Formulation of Lattice Gauge Theories. Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 140-151. http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a10/

[1] Nielsen H. B., Ninomiya M., “Absence of neutrinos on a lattice. I: Proof by homotopy theory”, Nucl. Phys. B, 185 (1981), 20–40 | DOI | MR

[2] Frolov S. A., Slavnov A. A., “An invariant regularization of the Standard Model”, Phys. Lett. B, 309 (1993), 344–350 | DOI | MR

[3] Frolov S. A., Slavnov A. A., “Removing fermion doublers in chiral gauge theories on the lattice”, Nucl. Phys. B, 411 (1994), 647–664 | DOI

[4] Slavnov A. A., “Generalized Pauli–Villars regularization for undoubled lattice fermions”, Phys. Lett. B, 348 (1995), 553–559 | DOI

[5] Slavnov A. A., Zverev N. V., “Fermion theories on a 2$d$ torus with Wilson action improved by Pauli–Villars regularization”, Phys. Lett. B, 420 (1998), 323–332 | DOI | MR

[6] Narayanan R., Neuberger H., Phys. Lett. B, 302 (1993), 62 | DOI

[7] Kaplan D. B., “A method for simulating chiral fermions on the lattice”, Phys. Lett. B, 288 (1992), 342–347 | DOI | MR

[8] Narayanan R., Neuberger H., “Chiral determinant as an overlap of two vacua”, Nucl. Phys. B, 412 (1994), 574–606 | DOI | MR | Zbl

[9] Shamir Y., “Chiral fermions from lattice boundaries”, Nucl. Phys. B, 406 (1993), 90 | DOI | MR

[10] Furman V., Shamir Y., “Axial symmetries in lattice QCD with Kaplan fermions”, Nucl. Phys. B, 439 (1995), 54–78 | DOI

[11] Neuberger H., “Vector-like gauge theories with almost massless fermions on the lattice”, Phys. Rev. D, 57 (1998), 5417–5433 ; arXiv: hep-lat/9710089 | DOI

[12] Blum T., Sony A., “Domain wall quarks and kaon Weak matrix elements”, Phys. Rev. Lett., 79 (1997), 3595–3598 | DOI

[13] Blum T., “Domain wall fermions in vector gauge theories”, Lattice'98: Rept on Conf.

[14] Aoki S., Taniguchi Y., “One loop calculation on lattice QCD with domain-wall quarks”, Phys. Rev. D, 59 (1999), 54510 ; arXiv: hep-lat/9711004 | DOI

[15] Kikukawa Y., Neuberger H., Yamada A., “Exponential suppression of radiatively induct mass in the truncated overlap”, Nucl. Phys. B, 526 (1998), 572–596 ; arXiv: hep-lat/9712022 | DOI | MR

[16] Slavnov A. A., “Fermi–Bose duality via extra dimension”, Phys. Lett. B, 388 (1996), 147–153 | DOI | MR

[17] Slavnov A. A., “Path integral representation for the phase of a chiral determinant and global anomaly”, Path integrals from peV to TeV (Florence, 1998), World Sci. Publ., River Edge, NJ, 1999, 80–86 | MR

[18] Wilson K. G., “Confinement of quarks”, Phys. Rev. D, 10 (1974), 2445–2459 | DOI

[19] Wilson K. G., “Quarks and strings on a lattice”, New phenomena in subnuclear physics, ed. A. Zichichi, Plenum Press, N. Y., 1977, 69 | MR

[20] Slavnov A. A., “Priblizhennoe reshenie matrichnykh $N\times N$ modelei pri bolshikh $N$”, TMF, 57 (1983), 4–11 | MR

[21] Slavnov A. A., “Lattice QCD with exponentially small chirality breaking”, Nucl. Phys. B, 544 (1999), 759–774 | DOI | MR | Zbl