On the Background Method and the Renormalization of the Dirichlet Functional in the AdS/CFT
Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 11-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet background field method for the case of the fields belonging to a noncompact symmetric space is discussed. A specific feature of the Dirichlet boundary problem for the corresponding Laplace equation is the specification of the initial data on the characteristic manifold whose dimension can be less then the dimension of the geometrical boundary. The renormalization of the Dirichlet functional and breakdown of conformal invariance are discussed.
@article{TRSPY_1999_226_a1,
     author = {I. Ya. Aref'eva},
     title = {On the {Background} {Method} and the {Renormalization} of the {Dirichlet} {Functional} in the {AdS/CFT}},
     journal = {Informatics and Automation},
     pages = {11--26},
     publisher = {mathdoc},
     volume = {226},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a1/}
}
TY  - JOUR
AU  - I. Ya. Aref'eva
TI  - On the Background Method and the Renormalization of the Dirichlet Functional in the AdS/CFT
JO  - Informatics and Automation
PY  - 1999
SP  - 11
EP  - 26
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a1/
LA  - ru
ID  - TRSPY_1999_226_a1
ER  - 
%0 Journal Article
%A I. Ya. Aref'eva
%T On the Background Method and the Renormalization of the Dirichlet Functional in the AdS/CFT
%J Informatics and Automation
%D 1999
%P 11-26
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a1/
%G ru
%F TRSPY_1999_226_a1
I. Ya. Aref'eva. On the Background Method and the Renormalization of the Dirichlet Functional in the AdS/CFT. Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 11-26. http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a1/

[1] Faddeev L. D., “Introduction to the functional methods”, Methods in field theory (Les Houches, 1975), North-Holland, Amsterdam, 1976, 3–40 | MR

[2] Arefeva I. Ya., Slavnov A. A., Faddeev L. D., “Proizvodyaschii funktsional dlya $S$-matritsy v kalibrovochno invariantnykh teoriyakh”, TMF, 21 (1974), 311–321

[3] De Witt B., “Quantum theory of gravity. II: The manifestly covariant theory”, Phys. Rev., 162 (1967), 1195–1239 | DOI

[4] Honerkamp J., “Chiral multi-loops”, Nucl. Phys. B, 36 (1972), 130 | DOI

[5] Faddeev L. D., How algebraic Bethe ansatz works for integrable model, Preprint UMANA 40/214, 1996 ; arXiv: hep-th/9605187 | MR

[6] Maldacena J. M., “The large $N$ limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys., 2 (1998), 231–252 ; arXiv: hep-th/9711200 | MR | Zbl

[7] Gubser S. S., Klebanov I. R., Polyakov A. M., “Gauge theory correlators from non-critical string theory”, Phys. Lett. B, 428 (1998), 105 ; arXiv: hep-th/9802109 | DOI | MR

[8] Witten E., “Anti-de Sitter space and holography”, Adv. Theor. Math. Phys., 2 (1998), 253–291 ; arXiv: hep-th/9802150 | MR | Zbl

[9] Ferrara S., Fronsdal C., Zaffaroni A., “On $N=8$ supergravity on $AdS_5$ and $N=4$ superconformal Yang–Mills theory”, Nucl. Phys. B, 532 (1998), 153 ; arXiv: hep-th/9802203 | DOI | MR | Zbl

[10] Faddeev L. D., “Razlozhenie po sobstvennym funktsiyam operatora Laplasa na fundamentalnoi oblasti diskretnoi gruppy na ploskosti Lobachevskogo”, Tr. Mosk. mat. o-va, 17, 1967, 323–350 | MR | Zbl

[11] Faddeev L. D., Pavlov B. S., “Teoriya rasseyaniya i avtomorfnye funktsii”, Zap. nauch. sem. LOMI, 27, 1972, 161–193 | MR | Zbl

[12] Lax D., Phillips R., Scattering theory for automorphic functions, Princeton Univ. Press, Princeton, N.J., 1976 | Zbl

[13] Aref'eva I. Ya., Volovich I. V., On large $N$ conformal theories, field theories in anti-de Sitter space and singletons, Preprint, 1998 ; arXiv: hep-th/9803028 | MR

[14] Aref'eva I., Volovich I., “On the breaking of conformal symmetry in the AdS/CFT correspondence”, Phys. Lett. B, 433 (1998), 49 ; arXiv: hep-th/9804182 | DOI | MR

[15] Henningson M., Sfetsos K., “Spinors and the AdS/CFT correspondence”, Phys. Lett. B, 431 (1998), 63 ; arXiv: hep-th/9803251 | DOI | MR

[16] Mück W., Viswanathan K. S., “Conformal field theory correlators from classical field theory on anti-de Sitter space: vector and spinor fields”, Phys. Rev. D, 58 (1998), 106 006 ; arXiv: hep-th/9805145 | MR

[17] Liu H., Tseytlin A. A., $D=4$ super Yang–Mills, $D=5$ gauged supergravity and $D=4$ conformal supergravity, Preprint, 1998 ; arXiv: hep-th/9804083 | MR

[18] Arutyunov G. E., Frolov S. A., Antisymmetric tensor field on $AdS_5$, Preprint, 1998 ; arXiv: hep-th/9807046 | MR

[19] l'Yi W. S., Correlators of currents corresponding to the massive $p$-form field in AdS/CFT correspondence, Preprint, 1998; arXiv: hep-th/9811097

[20] Corley S., The massless gravitino and the AdS/CFT correspondence, Preprint, 1998 ; arXiv: hep-th/9808184 | MR

[21] Volovich A., “Rarita–Schwinger field in the AdS/CFT correspondence”, JHEP, 9809 (1998), 022 ; arXiv: hep-th/9809009 | DOI | MR

[22] Koshelev A. S., Rytchkov O. A., Note on the massive Rarita–Schwinger field in the AdS/CFT correspondence, Preprint, 1998 ; arXiv: hep-th/9812238 | MR

[23] Mück W., Viswanathan K. S., “Conformal field theory correlators from classical scalar field theory on $AdS_{d+1}$”, Phys. Rev. D, 58 (1998), 041 901; arXiv: hep-th/9812238

[24] Freedman D. Z., Mathur S. D., Matusis A., Rastelli L., Correlation functions in the $CFT_d/AdS_{d+1}$ correspondence, Preprint, 1998 ; arXiv: hep-th/9804058 | MR

[25] Liu H., Tseytlin A. A., On four-point functions in the CFT/AdS correspondence, Preprint, 1998 ; arXiv: hep-th/9807097 | MR

[26] Cartan E., “Sur les domaines bornés, homogénes de l'espace de $n$ variables complexes”, Abh. Math. Sem. Hamburg. Univ., 11 (1936), 116–162 | DOI