Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_1999_226_a0, author = {L. D. Faddeev}, title = {Modern {Mathematical} {Physics:} {What} {Is} {It?}}, journal = {Informatics and Automation}, pages = {7--10}, publisher = {mathdoc}, volume = {226}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a0/} }
L. D. Faddeev. Modern Mathematical Physics: What Is It?. Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 7-10. http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a0/
[1] Nagel B., “The discussion concerning the Nobel Prize for Max Planck”, Science technology and society in the time of Alfred Nobel, Pergamon Press, N. Y., 1982
[2] Morse F., Feshbach H., Methods of theoretical physics, McGraw Hill, N. Y., 1953 | Zbl
[3] Courant R., Hilbert D., Methoden der mathematischen Physik, Springer-Verl., Berlin, 1931
[4] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd. LGU, L., 1950
[5] Dirac P., “Quantized singularities in the electromagnetic field”, Proc. Roy. Soc. London A, 133 (1931), 60–72 | DOI
[6] Yang C. N., Selected papers 1945–1980 with commentary, Freeman, San Francisco, 1983 | MR | Zbl
[7] Yang C. N., Mills R., “Conservation of isotopic spin and isotopic gauge invariance”, Phys. Rev., 96 (1954), 191–195 | DOI | MR
[8] Fock V., “L'equation d'onde de Dirac et la geometrie de Riemann”, J. phys. et rad., 70 (1929), 392–405 | DOI
[9] Weyl H., “Electron and gravitation”, Ztschr. Phys., 56 (1929), 330–352 | DOI | Zbl
[10] Klein O., “On the theory of charged fields”, New Theories in Physics (Warsaw (Pol.), 1938); Surv. High Energy Phys., 5 (1986), 269
[11] Feynman R. P., “Quantum theory of gravitation”, Acta phys. Polon., 24 (1963), 697–722 | MR
[12] Lichnerowicz A., Théorie globale des connexions et des groupes d'holonomie, Ed. Cremonese, Roma, 1955 | Zbl
[13] Faddeev L., Popov V., “Feynman diagrams for the Yang–Mills field”, Phys. Lett. B, 25 (1967), 29–30 | DOI
[14] Popov V., Faddeev L., Teoriya vozmuschenii dlya kalibrovochno invariantnykh polei, Preprint ITF-67-36, Kiev, 1967
[15] 't Hooft G., “Renormalizable Lagrangians for massive Yang–Mills fields”, Nucl. Phys. B, 35 (1971), 167–188 | DOI
[16] Coleman S., “Secret symmetries: An introduction to spontaneous symmetry breakdown and gauge fields”, Laws of hadronic matter, Internat. School Subnuclear Phys. (Erice, 1973), Subnuclear Series, 11, Academic Press, New York, 1975, 138–223 | MR
[17] 't Hooft G., When was asymptotic freedom discovered? Rehabilitation of quantum field theory, Preprint, 1998; arXiv: hep-th/9808154
[18] Gross D., Twenty years of asymptotic freedom, Preprint, 1998; arXiv: hep-th/9809080