Modern Mathematical Physics: What Is It?
Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 7-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TRSPY_1999_226_a0,
     author = {L. D. Faddeev},
     title = {Modern {Mathematical} {Physics:} {What} {Is} {It?}},
     journal = {Informatics and Automation},
     pages = {7--10},
     publisher = {mathdoc},
     volume = {226},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a0/}
}
TY  - JOUR
AU  - L. D. Faddeev
TI  - Modern Mathematical Physics: What Is It?
JO  - Informatics and Automation
PY  - 1999
SP  - 7
EP  - 10
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a0/
LA  - ru
ID  - TRSPY_1999_226_a0
ER  - 
%0 Journal Article
%A L. D. Faddeev
%T Modern Mathematical Physics: What Is It?
%J Informatics and Automation
%D 1999
%P 7-10
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a0/
%G ru
%F TRSPY_1999_226_a0
L. D. Faddeev. Modern Mathematical Physics: What Is It?. Informatics and Automation, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 7-10. http://geodesic.mathdoc.fr/item/TRSPY_1999_226_a0/

[1] Nagel B., “The discussion concerning the Nobel Prize for Max Planck”, Science technology and society in the time of Alfred Nobel, Pergamon Press, N. Y., 1982

[2] Morse F., Feshbach H., Methods of theoretical physics, McGraw Hill, N. Y., 1953 | Zbl

[3] Courant R., Hilbert D., Methoden der mathematischen Physik, Springer-Verl., Berlin, 1931

[4] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd. LGU, L., 1950

[5] Dirac P., “Quantized singularities in the electromagnetic field”, Proc. Roy. Soc. London A, 133 (1931), 60–72 | DOI

[6] Yang C. N., Selected papers 1945–1980 with commentary, Freeman, San Francisco, 1983 | MR | Zbl

[7] Yang C. N., Mills R., “Conservation of isotopic spin and isotopic gauge invariance”, Phys. Rev., 96 (1954), 191–195 | DOI | MR

[8] Fock V., “L'equation d'onde de Dirac et la geometrie de Riemann”, J. phys. et rad., 70 (1929), 392–405 | DOI

[9] Weyl H., “Electron and gravitation”, Ztschr. Phys., 56 (1929), 330–352 | DOI | Zbl

[10] Klein O., “On the theory of charged fields”, New Theories in Physics (Warsaw (Pol.), 1938); Surv. High Energy Phys., 5 (1986), 269

[11] Feynman R. P., “Quantum theory of gravitation”, Acta phys. Polon., 24 (1963), 697–722 | MR

[12] Lichnerowicz A., Théorie globale des connexions et des groupes d'holonomie, Ed. Cremonese, Roma, 1955 | Zbl

[13] Faddeev L., Popov V., “Feynman diagrams for the Yang–Mills field”, Phys. Lett. B, 25 (1967), 29–30 | DOI

[14] Popov V., Faddeev L., Teoriya vozmuschenii dlya kalibrovochno invariantnykh polei, Preprint ITF-67-36, Kiev, 1967

[15] 't Hooft G., “Renormalizable Lagrangians for massive Yang–Mills fields”, Nucl. Phys. B, 35 (1971), 167–188 | DOI

[16] Coleman S., “Secret symmetries: An introduction to spontaneous symmetry breakdown and gauge fields”, Laws of hadronic matter, Internat. School Subnuclear Phys. (Erice, 1973), Subnuclear Series, 11, Academic Press, New York, 1975, 138–223 | MR

[17] 't Hooft G., When was asymptotic freedom discovered? Rehabilitation of quantum field theory, Preprint, 1998; arXiv: hep-th/9808154

[18] Gross D., Twenty years of asymptotic freedom, Preprint, 1998; arXiv: hep-th/9809080