Optimal Arrangement of Finite Point Sets in Riemannian 2-Manifolds
Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 160-167.

Voir la notice de l'article provenant de la source Math-Net.Ru

First a stability version of a theorem of L. Fejes Tóth on sums of moments is given: a large finite point set in a $2$-dimensional Riemannian manifold, for which a certain sum of moments is minimal, must be an approximately regular hexagonal pattern. This result is then applied to show the following: (i) The nodes of optimal numerical integration formulae for Hoelder continuous functions on such manifolds form approximately regular hexagonal patterns if the number of nodes is large. (ii) Given a smooth convex body in $\mathbb E^3$, most facets of the circumscribed convex polytopes of minimum volume in essence are affine regular hexagons if the number of facets is large. A similar result holds with volume replaced by mean width. (iii) A convex polytope in $\mathbb E^3$ of minimal surface area, amongst those of given volume and given number of facets, has the property that most of its facets are almost regular hexagons assuming the number of facets is large.
@article{TRSPY_1999_225_a9,
     author = {P. M. Gruber},
     title = {Optimal {Arrangement} of {Finite} {Point} {Sets} in {Riemannian} {2-Manifolds}},
     journal = {Informatics and Automation},
     pages = {160--167},
     publisher = {mathdoc},
     volume = {225},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a9/}
}
TY  - JOUR
AU  - P. M. Gruber
TI  - Optimal Arrangement of Finite Point Sets in Riemannian 2-Manifolds
JO  - Informatics and Automation
PY  - 1999
SP  - 160
EP  - 167
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a9/
LA  - en
ID  - TRSPY_1999_225_a9
ER  - 
%0 Journal Article
%A P. M. Gruber
%T Optimal Arrangement of Finite Point Sets in Riemannian 2-Manifolds
%J Informatics and Automation
%D 1999
%P 160-167
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a9/
%G en
%F TRSPY_1999_225_a9
P. M. Gruber. Optimal Arrangement of Finite Point Sets in Riemannian 2-Manifolds. Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 160-167. http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a9/

[1] Babenko F.V., “Asimptoticheski tochnaya otsenka ostatka nailuchshikh dlya nekotorykh klassov funktsii kubaturnykh formul”, Mat. zametki, 19:3 (1976), 313–322 | MR | Zbl

[2] Babenko V. F., “On the optimal error bound for cubature formulas on certain classes of continuous functions”, Anal. Math., 3 (1977), 3–9 | DOI | MR | Zbl

[3] Blaschke W., Vorlesungen über Differentialgeometrie. Bd. 2. Affine Differentialgeometrie, Springer-Verl., Berlin, 1923 | Zbl

[4] Bollobás B., “The optimal arrangement of producers”, J. London Math. Soc., ser. 2, 6 (1973), 605–611 | DOI | MR

[5] Conway J. H., Sloane N. J. A., Sphere packings, lattices and groups, Grundl. Math. Wiss., 290, Springer-Verl., Berlin etc., 1988 | MR | Zbl

[6] Coxeter H. S. M., Fejes Tóth L., “The total length of the edges of a non-Euclidean polyhedron with triangular faces”, Quart. J. Math. Oxford., ser. 2, 14 (1963), 273–284 | DOI | MR | Zbl

[7] Fejes Tóth G., “Covering the plane by convex discs”, Acta Math. Acad. Sci. Hungar., 23 (1972), 263–270 | DOI | MR | Zbl

[8] Fejes Tóth G., “Sum of moments of convex polygons”, Acta Math. Acad. Sci. Hungar., 24 (1973), 417–421 | DOI | MR | Zbl

[9] Fejes Tóth G., “Solid sets of circles”, Stud. Sci. Math. Hungar., 9 (1974), 101–109 | MR

[10] Fejes Tóth L., “The isepiphan problem for $n$-hedra”, Amer. J. Math., 70 (1948), 174–180 | DOI | MR | Zbl

[11] Fejes Tóth L., “Extremum problems of the regular polyhedra”, Canad. J. Math., 2 (1950), 22–31 | MR | Zbl

[12] Fejes Tóth L., Lagerungen in der Ebene, auf der Kugel und im Raum, Springer-Verl., Berlin, 1953 ; 2-nd ed., Grundl. Math. Wiss., 65, 1972 | MR | Zbl

[13] Fejes Tóth L., “On the volume of a polyhedron in non-Euclidean spaces”, Publ. Math. Debrecen, 4 (1956), 256–261 | MR | Zbl

[14] Fejes Tóth L., “Sur la représentation d'une population infinie par un nombre fini d'elements”, Acta Math. Acad. Sci. Hungar., 10 (1959), 299–304 | DOI | MR | Zbl

[15] Fejes Tóth L., Regular figures, Pergamon Press, Oxford, 1964 | Zbl

[16] Fejes Tóth L., “Solid circle-packings and circle-coverings”, Stud. Sci. Math. Hungar., 3 (1968), 401–409 | MR | Zbl

[17] Florian A., “Integrale auf konvexen Mosaiken”, Period. Math. Hungar., 6 (1975), 23–38 | DOI | MR | Zbl

[18] Florian A., “Extremum problems for convex discs and polyhedra”, Handbook of convex geometry, v. A, eds. P. M. Gruber, J. M. Wills, North-Holland, Amsterdam, 1993, 177–221 | MR | Zbl

[19] Gersho A., “Asymptotically optimal block quantization”, IEEE Trans. Inform. Theory, 25:4 (1979), 373–380 | DOI | MR | Zbl

[20] Glasauer S., Gruber P. M., “Asymptotic estimates for best and stepwise approximation of convex bodies, III”, Forum Math, 9 (1997), 383–404 | DOI | MR | Zbl

[21] Glasauer S., Schneider R., “Asymptotic approximation of smooth convex bodies by polytopes”, Forum Math., 8 (1996), 363–377 | DOI | MR | Zbl

[22] Gruber P. M., “In most cases approximation is irregular”, Rend. Sem. Mat. Univ. Politecn. Torino, 41 (1983), 19–33 | MR | Zbl

[23] Gruber P. M., “Volume approximation of convex bodies by circumscribed polytopes”, Applied geometry and discrete mathematics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 4, Amer. Math. Soc., Providence, R.I., 1991, 309–317 | MR

[24] Gruber P. M., “Aspects of approximation of convex bodies”, Handbook of convex geometry, v. A, eds. P. M. Gruber, J. M. Wills, North-Holland, Amsterdam, 1993, 319–345 | MR | Zbl

[25] Gruber P. M., “Comparisons of best and random approximation of convex bodies by polytopes”, Rend. Circ. Mat. Palermo. (2) Suppl., 50 (1997), 189–216 | MR | Zbl

[26] Gruber P. M., “Stability of Blaschke's characterization of ellipsoids and Radon norms”, Discrete Comput. Geom., 17 (1997), 411–427 | DOI | MR | Zbl

[27] Gruber P. M., “Asymptotic estimates for best and stepwise approximation of convex bodies, IV”, Forum Math., 10 (1998), 665–686 | DOI | MR | Zbl

[28] Imre M., “Kreislagerungen auf Flächen konstanter Krümmung”, Acta Math. Acad. Sci. Hungar., 15 (1964), 115–121 | DOI | MR | Zbl

[29] Li A.-M., Simon U., Zhao G., Global affine differential geometry of hypersurfaces, de Gruyter, Berlin–New York, 1993 | MR

[30] Lindelöf E. L., “Propriétés générales des polyédres qui, sous une étendue superficielle donnée, renferment le plus grand volume”, Math. Ann., 2 (1870), 150–159 | DOI

[31] Linhart J., “Kantenkrümmung und Umkugelradius konvexer Polyeder”, Acta Math. Acad. Sci. Hungar., 34 (1979), 1–2 | DOI | MR | Zbl

[32] Matérn B., Person O., “On the extremum properties of the equilateral triangular lattice and the regular hexagonal network”, Inst. Skoglig Mat. Statist. Rapport. och Uppsats., 7 (1965), 15 | MR

[33] Minkowski H., “Allgemeine Lehrsätze über die konvexen Polyeder”, Nachr. Kgl. Ges. Wiss. Göttingen. Math.-phys. Kl., 1897, 198–219 ; Ges. Abh. Leipzig, bd. 2, Teubner, 1911, 109–127 | Zbl

[34] Newman D. J., “The hexagon theorem”, IEEE Trans. Inform. Theory, 28 (1982), 137–139 | DOI | MR | Zbl

[35] Stein M. L., “Locally lattice sampling designs for isotropic random fields”, Ann. Stat., 23 (1995), 1991–2012 | DOI | MR | Zbl