Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_1999_225_a9, author = {P. M. Gruber}, title = {Optimal {Arrangement} of {Finite} {Point} {Sets} in {Riemannian} {2-Manifolds}}, journal = {Informatics and Automation}, pages = {160--167}, publisher = {mathdoc}, volume = {225}, year = {1999}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a9/} }
P. M. Gruber. Optimal Arrangement of Finite Point Sets in Riemannian 2-Manifolds. Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 160-167. http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a9/
[1] Babenko F.V., “Asimptoticheski tochnaya otsenka ostatka nailuchshikh dlya nekotorykh klassov funktsii kubaturnykh formul”, Mat. zametki, 19:3 (1976), 313–322 | MR | Zbl
[2] Babenko V. F., “On the optimal error bound for cubature formulas on certain classes of continuous functions”, Anal. Math., 3 (1977), 3–9 | DOI | MR | Zbl
[3] Blaschke W., Vorlesungen über Differentialgeometrie. Bd. 2. Affine Differentialgeometrie, Springer-Verl., Berlin, 1923 | Zbl
[4] Bollobás B., “The optimal arrangement of producers”, J. London Math. Soc., ser. 2, 6 (1973), 605–611 | DOI | MR
[5] Conway J. H., Sloane N. J. A., Sphere packings, lattices and groups, Grundl. Math. Wiss., 290, Springer-Verl., Berlin etc., 1988 | MR | Zbl
[6] Coxeter H. S. M., Fejes Tóth L., “The total length of the edges of a non-Euclidean polyhedron with triangular faces”, Quart. J. Math. Oxford., ser. 2, 14 (1963), 273–284 | DOI | MR | Zbl
[7] Fejes Tóth G., “Covering the plane by convex discs”, Acta Math. Acad. Sci. Hungar., 23 (1972), 263–270 | DOI | MR | Zbl
[8] Fejes Tóth G., “Sum of moments of convex polygons”, Acta Math. Acad. Sci. Hungar., 24 (1973), 417–421 | DOI | MR | Zbl
[9] Fejes Tóth G., “Solid sets of circles”, Stud. Sci. Math. Hungar., 9 (1974), 101–109 | MR
[10] Fejes Tóth L., “The isepiphan problem for $n$-hedra”, Amer. J. Math., 70 (1948), 174–180 | DOI | MR | Zbl
[11] Fejes Tóth L., “Extremum problems of the regular polyhedra”, Canad. J. Math., 2 (1950), 22–31 | MR | Zbl
[12] Fejes Tóth L., Lagerungen in der Ebene, auf der Kugel und im Raum, Springer-Verl., Berlin, 1953 ; 2-nd ed., Grundl. Math. Wiss., 65, 1972 | MR | Zbl
[13] Fejes Tóth L., “On the volume of a polyhedron in non-Euclidean spaces”, Publ. Math. Debrecen, 4 (1956), 256–261 | MR | Zbl
[14] Fejes Tóth L., “Sur la représentation d'une population infinie par un nombre fini d'elements”, Acta Math. Acad. Sci. Hungar., 10 (1959), 299–304 | DOI | MR | Zbl
[15] Fejes Tóth L., Regular figures, Pergamon Press, Oxford, 1964 | Zbl
[16] Fejes Tóth L., “Solid circle-packings and circle-coverings”, Stud. Sci. Math. Hungar., 3 (1968), 401–409 | MR | Zbl
[17] Florian A., “Integrale auf konvexen Mosaiken”, Period. Math. Hungar., 6 (1975), 23–38 | DOI | MR | Zbl
[18] Florian A., “Extremum problems for convex discs and polyhedra”, Handbook of convex geometry, v. A, eds. P. M. Gruber, J. M. Wills, North-Holland, Amsterdam, 1993, 177–221 | MR | Zbl
[19] Gersho A., “Asymptotically optimal block quantization”, IEEE Trans. Inform. Theory, 25:4 (1979), 373–380 | DOI | MR | Zbl
[20] Glasauer S., Gruber P. M., “Asymptotic estimates for best and stepwise approximation of convex bodies, III”, Forum Math, 9 (1997), 383–404 | DOI | MR | Zbl
[21] Glasauer S., Schneider R., “Asymptotic approximation of smooth convex bodies by polytopes”, Forum Math., 8 (1996), 363–377 | DOI | MR | Zbl
[22] Gruber P. M., “In most cases approximation is irregular”, Rend. Sem. Mat. Univ. Politecn. Torino, 41 (1983), 19–33 | MR | Zbl
[23] Gruber P. M., “Volume approximation of convex bodies by circumscribed polytopes”, Applied geometry and discrete mathematics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 4, Amer. Math. Soc., Providence, R.I., 1991, 309–317 | MR
[24] Gruber P. M., “Aspects of approximation of convex bodies”, Handbook of convex geometry, v. A, eds. P. M. Gruber, J. M. Wills, North-Holland, Amsterdam, 1993, 319–345 | MR | Zbl
[25] Gruber P. M., “Comparisons of best and random approximation of convex bodies by polytopes”, Rend. Circ. Mat. Palermo. (2) Suppl., 50 (1997), 189–216 | MR | Zbl
[26] Gruber P. M., “Stability of Blaschke's characterization of ellipsoids and Radon norms”, Discrete Comput. Geom., 17 (1997), 411–427 | DOI | MR | Zbl
[27] Gruber P. M., “Asymptotic estimates for best and stepwise approximation of convex bodies, IV”, Forum Math., 10 (1998), 665–686 | DOI | MR | Zbl
[28] Imre M., “Kreislagerungen auf Flächen konstanter Krümmung”, Acta Math. Acad. Sci. Hungar., 15 (1964), 115–121 | DOI | MR | Zbl
[29] Li A.-M., Simon U., Zhao G., Global affine differential geometry of hypersurfaces, de Gruyter, Berlin–New York, 1993 | MR
[30] Lindelöf E. L., “Propriétés générales des polyédres qui, sous une étendue superficielle donnée, renferment le plus grand volume”, Math. Ann., 2 (1870), 150–159 | DOI
[31] Linhart J., “Kantenkrümmung und Umkugelradius konvexer Polyeder”, Acta Math. Acad. Sci. Hungar., 34 (1979), 1–2 | DOI | MR | Zbl
[32] Matérn B., Person O., “On the extremum properties of the equilateral triangular lattice and the regular hexagonal network”, Inst. Skoglig Mat. Statist. Rapport. och Uppsats., 7 (1965), 15 | MR
[33] Minkowski H., “Allgemeine Lehrsätze über die konvexen Polyeder”, Nachr. Kgl. Ges. Wiss. Göttingen. Math.-phys. Kl., 1897, 198–219 ; Ges. Abh. Leipzig, bd. 2, Teubner, 1911, 109–127 | Zbl
[34] Newman D. J., “The hexagon theorem”, IEEE Trans. Inform. Theory, 28 (1982), 137–139 | DOI | MR | Zbl
[35] Stein M. L., “Locally lattice sampling designs for isotropic random fields”, Ann. Stat., 23 (1995), 1991–2012 | DOI | MR | Zbl