Bispectral Symmetry, the Weyl Algebra and Differential Operators on Curves
Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 153-159

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem of Cannings and Holland can be interpreted as identifying the space of rational solutions to the KP hierarchy with the space of isomorphism classes of right ideals in the Weyl algebra. The article sketches some applications of this connection.
@article{TRSPY_1999_225_a8,
     author = {G. Wilson},
     title = {Bispectral {Symmetry,} the {Weyl} {Algebra} and {Differential} {Operators} on {Curves}},
     journal = {Informatics and Automation},
     pages = {153--159},
     publisher = {mathdoc},
     volume = {225},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a8/}
}
TY  - JOUR
AU  - G. Wilson
TI  - Bispectral Symmetry, the Weyl Algebra and Differential Operators on Curves
JO  - Informatics and Automation
PY  - 1999
SP  - 153
EP  - 159
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a8/
LA  - en
ID  - TRSPY_1999_225_a8
ER  - 
%0 Journal Article
%A G. Wilson
%T Bispectral Symmetry, the Weyl Algebra and Differential Operators on Curves
%J Informatics and Automation
%D 1999
%P 153-159
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a8/
%G en
%F TRSPY_1999_225_a8
G. Wilson. Bispectral Symmetry, the Weyl Algebra and Differential Operators on Curves. Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 153-159. http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a8/