Meromorphic Transformation to the Birkhoff Standard Form in Small Dimensions
Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 87-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every system of 4 or 5 linear differential equations with two irreducible blocks in a neighborhood of an irregular singular point can be transformed to the Birkhoff standard form with the help of a meromorphic transformation which does not increase the Poincaré rank of the singularity.
@article{TRSPY_1999_225_a5,
     author = {A. A. Bolibrukh},
     title = {Meromorphic {Transformation} to the {Birkhoff} {Standard} {Form} in {Small} {Dimensions}},
     journal = {Informatics and Automation},
     pages = {87--95},
     publisher = {mathdoc},
     volume = {225},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a5/}
}
TY  - JOUR
AU  - A. A. Bolibrukh
TI  - Meromorphic Transformation to the Birkhoff Standard Form in Small Dimensions
JO  - Informatics and Automation
PY  - 1999
SP  - 87
EP  - 95
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a5/
LA  - ru
ID  - TRSPY_1999_225_a5
ER  - 
%0 Journal Article
%A A. A. Bolibrukh
%T Meromorphic Transformation to the Birkhoff Standard Form in Small Dimensions
%J Informatics and Automation
%D 1999
%P 87-95
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a5/
%G ru
%F TRSPY_1999_225_a5
A. A. Bolibrukh. Meromorphic Transformation to the Birkhoff Standard Form in Small Dimensions. Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 87-95. http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a5/

[1] Balser W., “Analytic transformation to Birkhoff standard form in dimension three”, Funkcialaj Ekvacioj, 33:1 (1990), 59–67 | MR | Zbl

[2] Balser W., “Meromorphic transformation to Birkhoff standard form in dimension three”, J. Fac. Sci. Univ. Tokyo. Sect. IA: Math., 36 (1989), 233–246 | MR | Zbl

[3] Balser W., Bolibruch A. A., “Transformation of reducible equations to Birkhoff standard form”, Ulmer Sem. Funktionalanalysis und Differentialgleichungen, 2 (1997), 73–81

[4] Balser W., Jurkat W. B., Lutz D. A., “Invariants for reducible systems of meromorphic differential equations”, Proc. Edinburgh Math. Soc., 23 (1980), 163–186 | DOI | MR | Zbl

[5] Birkhoff G. D., “A theorem on matrices of analytic functions”, Math. Ann., 74 (1913), 122–133 | DOI | MR

[6] Bolibrukh A. A., “Ob analiticheskom preobrazovanii k standartnoi birkgofovoi forme”, Dokl. RAN, 334:5 (1994), 553–555 | MR | Zbl

[7] Bolibrukh A. A., “Ob analiticheskom preobrazovanii k standartnoi birkgofovoi forme”, Tr. MIAN, 203 (1994), 33–40 | MR | Zbl

[8] Bolibruch A. A., “On the Birkhoff standard form of a linear system of ODE”, AMS Transl., ser. 2, 174 (1996), 169–180 | MR

[9] Gantmakher F. R., Teoriya matrits, Nauka, M., 1974 | MR

[10] Jurkat W. B., Lutz D. A., Peyerimhoff A., “Birkhoff invariants and effective calculations for meromorphic differential equations, I”, J. Math. Anal. Appl., 53 (1976), 438–470 | DOI | MR | Zbl

[11] Okonek G., Schneider H., Spindler H., Vector bundles on complex projective spaces, Birkhäuser, Boston, 1980 | MR | Zbl

[12] Sabbah C., “Frobenius manifolds: isomonodromic deformations and infinitesimal period mappings”, Expos. Math., 16:1 (1998), 1–57 | MR | Zbl

[13] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR