Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_1999_225_a24, author = {M. Farber and A. Ranicki}, title = {The {Morse--Novikov} {Theory} of {Circle-Valued} {Functions} and {Noncommutative} {Localization}}, journal = {Informatics and Automation}, pages = {381--388}, publisher = {mathdoc}, volume = {225}, year = {1999}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a24/} }
TY - JOUR AU - M. Farber AU - A. Ranicki TI - The Morse--Novikov Theory of Circle-Valued Functions and Noncommutative Localization JO - Informatics and Automation PY - 1999 SP - 381 EP - 388 VL - 225 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a24/ LA - en ID - TRSPY_1999_225_a24 ER -
M. Farber; A. Ranicki. The Morse--Novikov Theory of Circle-Valued Functions and Noncommutative Localization. Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 381-388. http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a24/
[1] Cohn P. M., Free rings and their relations, Acad. Press, London, 1971 | MR
[2] Farber M., “Exactness of the Novikov inequalities”, Funct. Anal. Appl., 19 (1985), 40–48 | DOI | MR | Zbl
[3] Novikov S. P., “Gamiltonov formalizm i mnogomernyi analog teorii Morsa”, UMN, 37:5 (1982), 3–49 | MR | Zbl
[4] Pazhitnov A. V., “On the Novikov complex for rational Morse forms”, Ann. Fac. Sci. Toulouse, 4 (1995), 297–338 | MR | Zbl
[5] Pazhitnov A. V., Incidence coefficients in the Novikov complex for Morse forms: rationality and exponential growth properties, Preprint, 1996 ; arXiv: dg-ga/9604004 | Zbl
[6] Pazhitnov A. V., Simple homotopy type of Novikov complex for closed 1-forms and Lefschetz $\zeta$-function of the gradient flow, Preprint, 1997 ; arXiv: dg-ga/9706014 | Zbl