Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_1999_225_a23, author = {E. V. Troitskii}, title = {Functionals on $l_2(A)$, {Kuiper} and {Dixmier--Douady} {Type} {Theorems} for $C^*${-Hilbert} {Modules}}, journal = {Informatics and Automation}, pages = {362--380}, publisher = {mathdoc}, volume = {225}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a23/} }
TY - JOUR AU - E. V. Troitskii TI - Functionals on $l_2(A)$, Kuiper and Dixmier--Douady Type Theorems for $C^*$-Hilbert Modules JO - Informatics and Automation PY - 1999 SP - 362 EP - 380 VL - 225 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a23/ LA - ru ID - TRSPY_1999_225_a23 ER -
E. V. Troitskii. Functionals on $l_2(A)$, Kuiper and Dixmier--Douady Type Theorems for $C^*$-Hilbert Modules. Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 362-380. http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a23/
[1] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962
[2] Kasimov V. A., “Gomotopicheskie svoistva obschei lineinoi gruppy gilbertova modulya $l_2(A)$”, Mat. sb., 119:3 (1982), 376–386 | MR | Zbl
[3] Kyuiper N., “Gomotopicheskii tip unitarnoi gruppy gilbertova prostranstva”, Lektsii po $K$-teorii, ed. Atya M., Mir, M., 1967, 241–260, prilozhenie
[4] Mischenko A. S., “Banakhovy algebry, psevdodifferentsialnye operatory i ikh prilozheniya v $K$-teorii”, UMN, 34:6 (1979), 67–79 | MR
[5] Mischenko A. S., Fomenko A. T., “Indeks ellipticheskikh operatorov nad $C^*$-algebrami”, Izv. AN SSSR. Ser. mat., 43 (1979), 831–859 | MR
[6] Pavlov A. A., “Algebry multiplikatorov i prostranstva kvazimultiplikatorov”, Vestn. MGU. Matematika. Mekhanika, 1998, no. 6, 14–18 | MR | Zbl
[7] Troitskii E. V., “Predstavlyayuschee prostranstvo $K$-funktora, svyazannogo s $C^*$-algebroi”, Vestn. MGU. Matematika. Mekhanika, 1985, no. 1, 96–98 | MR
[8] Troitskii E. V., “Styagivaemost polnoi obschei lineinoi gruppy $C^*$-gilbertova modulya $l_2(A)$”, Funktsion. analiz i ego pril., 20:4 (1986), 58–64 | MR
[9] Brown L.G., Close hereditary $C^*$-subalgebras and the structure of quasi-multipliers, MSRI Preprint # 11211-85, 1985 | MR
[10] Cuntz J., Higson N., “Kuiper's theorem for Hilbert modules”, Contemp. Math., 62 (1987), 429–435 | MR | Zbl
[11] Dixmier J., Douady A., “Champs continus d'espaces Hilbertiens”, Bull. Soc. Math. France, 91 (1963), 227–284 | MR | Zbl
[12] Frank M., “Self-duality and $C^*$-reflexivity of Hilbert $C^*$-modules”, Ztschr. Anal. Anw., 9 (1990), 165–176 | MR
[13] Frank M., Geometrical aspects of Hilbert $C^*$-modules, Københavns Univ. Mat. Inst. Preprint Ser. No 22, 1999 | MR
[14] Kasparov G. G., “Hilbert $C^*$-modules: Theorems of Stinespring and Voiculescu”, J. Oper. Theory, 4 (1980), 133–150 | MR | Zbl
[15] Lance E. C., Hilbert $C^*$-modules – a toolkit for operator algebraists, London Math. Soc. Lect. Note Ser., 210, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[16] Lin H., “Bounded module maps and pure completely positive maps”, J. Oper. Theory, 26 (1991), 121–138 | MR | Zbl
[17] Milnor J., “On spaces having the homotopy type of a $CW$-complex”, Trans. Amer. Math. Soc., 90 (1959), 272–280 | DOI | MR
[18] Mingo J. A., “On the contractibility of the general linear group of Hilbert space over a $C^*$-algebra”, J. Integral Equat. Oper. Theory, 5 (1982), 888–891 | DOI | MR | Zbl
[19] Mingo J. A., “$K$-theory and multipliers of stable $C^*$-algebras”, Trans. Amer. Math. Soc., 299 (1987), 397–411 | DOI | MR | Zbl
[20] Neubauer G., “Der Homotopietyp der Automorphismegruppe in der Räumen $l_p$ und $c_0$”, Math. Ann., 174 (1967), 33–40 | DOI | MR | Zbl
[21] Paschke W. L., “Inner product modules over $B^*$-algebras”, Trans. Amer. Math. Soc., 182 (1973), 443–468 | DOI | MR | Zbl
[22] Troitsky E. V., “Orthogonal complements and endomorphisms of Hilbert modules and $C^*$-elliptic complexes”, Novikov conjectures, index theorems and rigidity, Vol. 2, London Math. Soc. Lect. Notes Ser., 227, Cambridge Univ. Press, Cambridge, 1995, 309–331 | MR | Zbl
[23] Wegge-Olsen N. E., $K$-theory and $C^*$-algebras, Oxford Univ. Press, Oxford, 1993 | MR | Zbl