The Weierstrass Representation of Spheres in $\mathbb R^3$, the Willmore Numbers, and Soliton Spheres
Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 339-361.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TRSPY_1999_225_a22,
     author = {I. A. Taimanov},
     title = {The {Weierstrass} {Representation} of {Spheres} in $\mathbb R^3$, the {Willmore} {Numbers,} and {Soliton} {Spheres}},
     journal = {Informatics and Automation},
     pages = {339--361},
     publisher = {mathdoc},
     volume = {225},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a22/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - The Weierstrass Representation of Spheres in $\mathbb R^3$, the Willmore Numbers, and Soliton Spheres
JO  - Informatics and Automation
PY  - 1999
SP  - 339
EP  - 361
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a22/
LA  - ru
ID  - TRSPY_1999_225_a22
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T The Weierstrass Representation of Spheres in $\mathbb R^3$, the Willmore Numbers, and Soliton Spheres
%J Informatics and Automation
%D 1999
%P 339-361
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a22/
%G ru
%F TRSPY_1999_225_a22
I. A. Taimanov. The Weierstrass Representation of Spheres in $\mathbb R^3$, the Willmore Numbers, and Soliton Spheres. Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 339-361. http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a22/

[1] Ablowitz M. J., Segur H., Solitons and the inverse scattering method, SIAM, Philadelhia, 1981 | MR | Zbl

[2] Bär C., Extrinsic bounds for eigenvalues of the Dirac operator, Preprint, Freiburg Univ., 1997 | MR

[3] Bogdanov L. V., “O dvumernoi zadache Zakharova–Shabata”, TMF, 72:1 (1987), 155–159 | MR | Zbl

[4] Dirac P. A. M., The principles of quantum mechanics, 4th ed., Oxford Univ. Press, Oxford, 1958 | MR | Zbl

[5] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[6] Fay J., Theta functions on Riemann surfaces, Lect. Notes Math., 352, Springer-Verl., Berlin, 1973 | MR | Zbl

[7] Friedrich T., On the spinor representation of surfaces in Euclidean $3$-space, Preprint No 295. SFB 288, Techn. Univ., Berlin, 1997

[8] Eisenhart L. P., A treatise on the differential geometry of curves and surfaces, Dover Publ., N. Y., 1909 | MR

[9] Kamberov G., Pedit F., Pinkall U., “Bonnet pairs and isothermic surfaces”, Duke Math. J., 92 (1988), 637–644 | DOI | MR

[10] Konopelchenko B. G., “Induced surfaces and their integrable dynamics”, Stud. Appl. Math., 96 (1996), 9–52 | MR

[11] Lamb Jr. G. L., Elements of soliton theory, J. Wiley Sons, N. Y., 1980 | MR | Zbl

[12] Novikov S. P., “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza”, Funktsion. analiz i ego pril., 8:3 (1974), 54–66 | MR | Zbl

[13] Pedit F., Pinkall U., “Quaternionic analysis on Riemann surfaces and differential geometry”, Proc. Intern. Congr. Math., v. II (Berlin, 1998), Doc. Math., Extra Vol. 2, 1998, 389–400 (electronic) | MR | Zbl

[14] Richter J., Conformal maps of a Riemann surface into the space of quaternions, Ph.D. Thesis, Techn. Univ., Berlin, 1997

[15] Taimanov I. A., “Modified Novikov–Veselov equation and differential geometry of surfaces”, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 133–151 | MR | Zbl

[16] Taimanov I. A., “Surfaces of revolution in terms of solitons”, Ann. Global Anal. and Geom., 15 (1997), 419–435 | DOI | MR | Zbl

[17] Taimanov I. A., “Globalnoe predstavlenie Veiershtrassa i ego spektr”, UMN, 52:6 (1997), 187–188 | MR | Zbl

[18] Taimanov I. A., “Predstavlenie Veiershtrassa zamknutykh poverkhnostei v $\mathbb R^3$”, Funktsion. analiz i ego pril., 32:4 (1998), 49–62 | MR | Zbl

[19] S. P. Novikov(red.), Teoriya solitonov, Nauka, M., 1980 | MR