Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_1999_225_a21, author = {D. Repov\v{s} and A. B. Skopenkov}, title = {Borromean {Rings} and {Embedding} {Obstructions}}, journal = {Informatics and Automation}, pages = {331--338}, publisher = {mathdoc}, volume = {225}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a21/} }
D. Repovš; A. B. Skopenkov. Borromean Rings and Embedding Obstructions. Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 331-338. http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a21/
[1] Akhmetev P. M., “Ob izotopicheskoi i diskretnoi realizatsii otobrazhenii $n$-mernoi sfery v evklidovo prostranstvo”, Mat. sb., 187:7 (1996), 3–34 | MR
[2] Akhmetiev P. M., Repovš D., Skopenkov A. B., Obstructions to approximating maps of surfaces in $R^4$ by embeddings, Preprint, Univ. Ljubljana, 1998 | Zbl
[3] Cavicchioli A., Repovš D., Skopenkov A. B., “Open problems on graphs, arising from geometric topology”, Topol. Appl., 84 (1998), 207–226 | DOI | MR | Zbl
[4] Dranišnikov A. N., Repovš D., Ščepin E. V., “On intersection of compacta of complementary dimension in Euclidean space”, Topol. Appl., 38 (1991), 237–253 | DOI | MR | Zbl
[5] Dranišnikov A. N., Repovš D., Ščepin E. V., “On intersection of compacta in Euclidean space: the metastable case”, Tsukuba J. Math., 17 (1993), 549–564 | MR | Zbl
[6] Freedman M. H., Krushkal V. S., Teichner P., “Van Kampen's embedding obstruction is incomplete for 2-complexes in $\mathbb R^4$”, Math. Res. Lett., 1 (1994), 167–176 | MR | Zbl
[7] Flores A., “Über $n$-dimensionale Komplexe die im $E^{2n+1}$ absolute Selbstverschlungen sind”, Ergeb. Math. Koll., 6 (1934), 4–7
[8] Fomenko A. T., Fuks D. B., Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR
[9] Francis G. K., A topological picturebook, Springer-Verl., Berlin, 1987 | MR
[10] Haefliger A., “Knotted $(4k-1)$-spheres in $6k$-space”, Ann. Math., ser. 2, 75 (1962), 452–466 | DOI | MR | Zbl
[11] Haefliger A., “Differentiable links”, Topology, 1 (1962), 241–244 | DOI | MR | Zbl
[12] Haefliger A., “Plongements differentiables dans le domain stable”, Comment. Math. Helv., 36 (1962–1963), 155–176 | DOI | MR
[13] Harris L. S., “Intersections and embeddings of polyhedra”, Topology, 8 (1969), 1–26 | DOI | MR | Zbl
[14] Hsiang W. C., Levine J., Sczarba R. H., “On the normal bundle of a homotopy sphere embedded in Euclidean space”, Topology, 3 (1965), 173–181 | DOI | MR | Zbl
[15] Hu S.-T., “Isotopy invariants of topological spaces”, Proc. London Roy. Soc. A, 255 (1960), 331–366 | DOI | MR | Zbl
[16] Husch L. S., “$\varepsilon$-Maps and embeddings”, General topological relations to modern analysis and algebra, 6, Heldermann, Berlin, 1988, 273–280 | MR
[17] Van Kampen E. R., “Komplexe in euclidische Raumen”, Abh. math. Sem. Univ. Hamburg, 9 (1932), 72–78; “Berichtigung dazu”, 152–153
[18] Kervaire M., Milnor J. W., “On 2-spheres in 4-manifolds”, Proc. Nat. Acad. Sci. USA, 47 (1961), 1651–1657 | DOI | MR | Zbl
[19] Kirby R. C., “4-manifold problems”, Contemp. Math., 35 (1984), 513–528 | MR | Zbl
[20] Kuratowski K., “Sur le problemes des courbes gauche en topologie”, Fund. math., 15 (1930), 271–283 | Zbl
[21] Lackenby M., “The Whitney trick”, Topol. Appl., 71 (1996), 115–118 | DOI | MR | Zbl
[22] Makarychev Yu., “A short proof of Kuratowski's graph planarity criterion”, J. Graph Theory, 25 (1997), 129–131 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[23] Massey W. S., “Homotopy classification of 3-component links of codimension greater than 2”, Topol. Appl., 34 (1990), 269–300 | DOI | MR | Zbl
[24] Mardešić S., Segal J., “$\varepsilon$-Mappings and generalized manifolds”, Michigan Math. J., 14 (1967), 171–182 | DOI | MR | Zbl
[25] Novikov S. P., “Gomotopicheski ekvivalentnye gladkie mnogoobraziya”, Izv. AN SSSR. Ser. mat., 28:2 (1964), 365–474
[26] Rees E. G., “Problems concerning embeddings of manifolds”, Adv. Math., 19:1 (1990), 72–79 | MR | Zbl
[27] Repovš D., Skopenkov A. B., “Embeddability and isotopy of polyhedra in Euclidean spaces”, Tr. MIAN, 212, 1996, 173–188 | MR
[28] Repovš D., Skopenkov A. B., “A deleted product criterion for approximability of a map by embeddings”, Topol. Appl., 87 (1998), 1–19 | DOI | MR | Zbl
[29] Sarkaria K. S., “A one-dimensional Whitney trick and Kuratowski's graph planarity criterion”, Israel J. Math., 73 (1991), 79–89 | DOI | MR | Zbl
[30] Sarkaria K. S., “Kuratowski complexes”, Topology, 30 (1991), 67–76 | DOI | MR | Zbl
[31] Segal J., Quasi-embeddings of polyhedra in $R^m$, Abstr. of the Borsuk–Kuratowski Session, Warsaw, 1996
[32] Segal J., Spież S., “On transversely trivial maps”, Quest. and Answ. Gen. Topol., 8 (1990), 91–100 | MR | Zbl
[33] Segal J., Spież S., “Quasi embeddings and embeddings of polyhedra in $\mathbb R^m$”, Topol. Appl., 45 (1992), 275–282 | DOI | MR | Zbl
[34] Shapiro A., “Obstructions to the embedding of a complex in a Euclidean space. I: The first obstruction”, Ann. Math., ser. 2, 66 (1957), 256–269 | DOI | MR | Zbl
[35] Skopenkov A. B., “On the deleted product criterion for embeddability of manifolds in $R^m$”, Comment. Math. Helv., 72 (1997), 543–555 | DOI | MR | Zbl
[36] Skopenkov A. B., “On the deleted product criterion for embeddability in $R^m$”, Proc. Amer. Math. Soc., 126:8 (1998), 2467–2476 | DOI | MR | Zbl
[37] Skopenkov A. B., On the deleted product criterion for embeddings and immersions of manifolds in $\mathbb R^m$, Preprint, Moscow, 1998 | MR
[38] Spież S., “Imbeddings in $\mathbb R^{2m}$ of $m$-dimensional compacta with $\dim(X\times X)2m$”, Fund. math., 134 (1990), 105–115 | MR | Zbl
[39] Spież S., Toruńczyk H., “Moving compacta in $\mathbb R^m$ apart”, Topol. Appl., 41 (1991), 193–204 | DOI | MR | Zbl
[40] Segal J., Skopenkov A. B., Spież S., “Embeddings of polyhedra in $R^m$ and the deleted product obstruction”, Topol. Appl., 85 (1998), 225–234 | MR
[41] Thomassen C., “Kuratowski's theorem”, J. Graph. Theory, 5 (1981), 225–242 | DOI | MR
[42] Weber C., “Plongements de polyèdres dans le domain metastable”, Comment. Math. Helv., 42 (1967), 1–27 | DOI | MR | Zbl
[43] Whitney H., “The self-intersections of a smooth $n$-manifolds in $2n$-space”, Ann. Math., ser. 2, 45 (1944), 220–246 | DOI | MR | Zbl
[44] Wu W. T., “On the realization of complexes in a Euclidean space, I”, Sci. Sinica, 7 (1958), 251–297 ; “II”, 365–387; “III”, 8 (1959), 133–150 | MR | Zbl | MR