Borromean Rings and Embedding Obstructions
Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 331-338.

Voir la notice de l'article provenant de la source Math-Net.Ru

This survey describes recent examples of incompleteness of the Van Kampen and the deleted product obstructions beyond the metastable case. The construction is an interesting example of the interplay between algebraic and geometric topology and one of its origins is the Borromean rings example.
@article{TRSPY_1999_225_a21,
     author = {D. Repov\v{s} and A. B. Skopenkov},
     title = {Borromean {Rings} and {Embedding} {Obstructions}},
     journal = {Informatics and Automation},
     pages = {331--338},
     publisher = {mathdoc},
     volume = {225},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a21/}
}
TY  - JOUR
AU  - D. Repovš
AU  - A. B. Skopenkov
TI  - Borromean Rings and Embedding Obstructions
JO  - Informatics and Automation
PY  - 1999
SP  - 331
EP  - 338
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a21/
LA  - ru
ID  - TRSPY_1999_225_a21
ER  - 
%0 Journal Article
%A D. Repovš
%A A. B. Skopenkov
%T Borromean Rings and Embedding Obstructions
%J Informatics and Automation
%D 1999
%P 331-338
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a21/
%G ru
%F TRSPY_1999_225_a21
D. Repovš; A. B. Skopenkov. Borromean Rings and Embedding Obstructions. Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 331-338. http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a21/

[1] Akhmetev P. M., “Ob izotopicheskoi i diskretnoi realizatsii otobrazhenii $n$-mernoi sfery v evklidovo prostranstvo”, Mat. sb., 187:7 (1996), 3–34 | MR

[2] Akhmetiev P. M., Repovš D., Skopenkov A. B., Obstructions to approximating maps of surfaces in $R^4$ by embeddings, Preprint, Univ. Ljubljana, 1998 | Zbl

[3] Cavicchioli A., Repovš D., Skopenkov A. B., “Open problems on graphs, arising from geometric topology”, Topol. Appl., 84 (1998), 207–226 | DOI | MR | Zbl

[4] Dranišnikov A. N., Repovš D., Ščepin E. V., “On intersection of compacta of complementary dimension in Euclidean space”, Topol. Appl., 38 (1991), 237–253 | DOI | MR | Zbl

[5] Dranišnikov A. N., Repovš D., Ščepin E. V., “On intersection of compacta in Euclidean space: the metastable case”, Tsukuba J. Math., 17 (1993), 549–564 | MR | Zbl

[6] Freedman M. H., Krushkal V. S., Teichner P., “Van Kampen's embedding obstruction is incomplete for 2-complexes in $\mathbb R^4$”, Math. Res. Lett., 1 (1994), 167–176 | MR | Zbl

[7] Flores A., “Über $n$-dimensionale Komplexe die im $E^{2n+1}$ absolute Selbstverschlungen sind”, Ergeb. Math. Koll., 6 (1934), 4–7

[8] Fomenko A. T., Fuks D. B., Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR

[9] Francis G. K., A topological picturebook, Springer-Verl., Berlin, 1987 | MR

[10] Haefliger A., “Knotted $(4k-1)$-spheres in $6k$-space”, Ann. Math., ser. 2, 75 (1962), 452–466 | DOI | MR | Zbl

[11] Haefliger A., “Differentiable links”, Topology, 1 (1962), 241–244 | DOI | MR | Zbl

[12] Haefliger A., “Plongements differentiables dans le domain stable”, Comment. Math. Helv., 36 (1962–1963), 155–176 | DOI | MR

[13] Harris L. S., “Intersections and embeddings of polyhedra”, Topology, 8 (1969), 1–26 | DOI | MR | Zbl

[14] Hsiang W. C., Levine J., Sczarba R. H., “On the normal bundle of a homotopy sphere embedded in Euclidean space”, Topology, 3 (1965), 173–181 | DOI | MR | Zbl

[15] Hu S.-T., “Isotopy invariants of topological spaces”, Proc. London Roy. Soc. A, 255 (1960), 331–366 | DOI | MR | Zbl

[16] Husch L. S., “$\varepsilon$-Maps and embeddings”, General topological relations to modern analysis and algebra, 6, Heldermann, Berlin, 1988, 273–280 | MR

[17] Van Kampen E. R., “Komplexe in euclidische Raumen”, Abh. math. Sem. Univ. Hamburg, 9 (1932), 72–78; “Berichtigung dazu”, 152–153

[18] Kervaire M., Milnor J. W., “On 2-spheres in 4-manifolds”, Proc. Nat. Acad. Sci. USA, 47 (1961), 1651–1657 | DOI | MR | Zbl

[19] Kirby R. C., “4-manifold problems”, Contemp. Math., 35 (1984), 513–528 | MR | Zbl

[20] Kuratowski K., “Sur le problemes des courbes gauche en topologie”, Fund. math., 15 (1930), 271–283 | Zbl

[21] Lackenby M., “The Whitney trick”, Topol. Appl., 71 (1996), 115–118 | DOI | MR | Zbl

[22] Makarychev Yu., “A short proof of Kuratowski's graph planarity criterion”, J. Graph Theory, 25 (1997), 129–131 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[23] Massey W. S., “Homotopy classification of 3-component links of codimension greater than 2”, Topol. Appl., 34 (1990), 269–300 | DOI | MR | Zbl

[24] Mardešić S., Segal J., “$\varepsilon$-Mappings and generalized manifolds”, Michigan Math. J., 14 (1967), 171–182 | DOI | MR | Zbl

[25] Novikov S. P., “Gomotopicheski ekvivalentnye gladkie mnogoobraziya”, Izv. AN SSSR. Ser. mat., 28:2 (1964), 365–474

[26] Rees E. G., “Problems concerning embeddings of manifolds”, Adv. Math., 19:1 (1990), 72–79 | MR | Zbl

[27] Repovš D., Skopenkov A. B., “Embeddability and isotopy of polyhedra in Euclidean spaces”, Tr. MIAN, 212, 1996, 173–188 | MR

[28] Repovš D., Skopenkov A. B., “A deleted product criterion for approximability of a map by embeddings”, Topol. Appl., 87 (1998), 1–19 | DOI | MR | Zbl

[29] Sarkaria K. S., “A one-dimensional Whitney trick and Kuratowski's graph planarity criterion”, Israel J. Math., 73 (1991), 79–89 | DOI | MR | Zbl

[30] Sarkaria K. S., “Kuratowski complexes”, Topology, 30 (1991), 67–76 | DOI | MR | Zbl

[31] Segal J., Quasi-embeddings of polyhedra in $R^m$, Abstr. of the Borsuk–Kuratowski Session, Warsaw, 1996

[32] Segal J., Spież S., “On transversely trivial maps”, Quest. and Answ. Gen. Topol., 8 (1990), 91–100 | MR | Zbl

[33] Segal J., Spież S., “Quasi embeddings and embeddings of polyhedra in $\mathbb R^m$”, Topol. Appl., 45 (1992), 275–282 | DOI | MR | Zbl

[34] Shapiro A., “Obstructions to the embedding of a complex in a Euclidean space. I: The first obstruction”, Ann. Math., ser. 2, 66 (1957), 256–269 | DOI | MR | Zbl

[35] Skopenkov A. B., “On the deleted product criterion for embeddability of manifolds in $R^m$”, Comment. Math. Helv., 72 (1997), 543–555 | DOI | MR | Zbl

[36] Skopenkov A. B., “On the deleted product criterion for embeddability in $R^m$”, Proc. Amer. Math. Soc., 126:8 (1998), 2467–2476 | DOI | MR | Zbl

[37] Skopenkov A. B., On the deleted product criterion for embeddings and immersions of manifolds in $\mathbb R^m$, Preprint, Moscow, 1998 | MR

[38] Spież S., “Imbeddings in $\mathbb R^{2m}$ of $m$-dimensional compacta with $\dim(X\times X)2m$”, Fund. math., 134 (1990), 105–115 | MR | Zbl

[39] Spież S., Toruńczyk H., “Moving compacta in $\mathbb R^m$ apart”, Topol. Appl., 41 (1991), 193–204 | DOI | MR | Zbl

[40] Segal J., Skopenkov A. B., Spież S., “Embeddings of polyhedra in $R^m$ and the deleted product obstruction”, Topol. Appl., 85 (1998), 225–234 | MR

[41] Thomassen C., “Kuratowski's theorem”, J. Graph. Theory, 5 (1981), 225–242 | DOI | MR

[42] Weber C., “Plongements de polyèdres dans le domain metastable”, Comment. Math. Helv., 42 (1967), 1–27 | DOI | MR | Zbl

[43] Whitney H., “The self-intersections of a smooth $n$-manifolds in $2n$-space”, Ann. Math., ser. 2, 45 (1944), 220–246 | DOI | MR | Zbl

[44] Wu W. T., “On the realization of complexes in a Euclidean space, I”, Sci. Sinica, 7 (1958), 251–297 ; “II”, 365–387; “III”, 8 (1959), 133–150 | MR | Zbl | MR