Discrete Schr\"odinger Equation on a~Finite Field and Associated Cellular Automaton
Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 319-330.

Voir la notice de l'article provenant de la source Math-Net.Ru

The discrete Schrödinger equation with potential belonging to $\mathbb F_2$ is solved explicitly. On this base, the associated $(1+1)$-dimensional cellular automaton is examined and a corresponding set of integrals of motion is constructed.
@article{TRSPY_1999_225_a20,
     author = {A. K. Pogrebkov},
     title = {Discrete {Schr\"odinger} {Equation} on {a~Finite} {Field} and {Associated} {Cellular} {Automaton}},
     journal = {Informatics and Automation},
     pages = {319--330},
     publisher = {mathdoc},
     volume = {225},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a20/}
}
TY  - JOUR
AU  - A. K. Pogrebkov
TI  - Discrete Schr\"odinger Equation on a~Finite Field and Associated Cellular Automaton
JO  - Informatics and Automation
PY  - 1999
SP  - 319
EP  - 330
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a20/
LA  - ru
ID  - TRSPY_1999_225_a20
ER  - 
%0 Journal Article
%A A. K. Pogrebkov
%T Discrete Schr\"odinger Equation on a~Finite Field and Associated Cellular Automaton
%J Informatics and Automation
%D 1999
%P 319-330
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a20/
%G ru
%F TRSPY_1999_225_a20
A. K. Pogrebkov. Discrete Schr\"odinger Equation on a~Finite Field and Associated Cellular Automaton. Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 319-330. http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a20/

[1] D. Farmer, T. Toffoli, S. Wolfram (eds.), Cellular automata, North-Holland, Amsterdam, 1984 | MR | Zbl

[2] S. Wolfram (ed.), Theory and application of the cellular automata, World Sci., Singapore, 1986 | MR | Zbl

[3] P. Manneville, N. Boccara, G. Vichniac, R. Bidaux (eds.), Cellular automata and modelling of the complex systems, Springer, N. Y. etc., 1989 | Zbl

[4] N. Boccara, E. Goles, S. Martínez, P. Palmerini (eds.), Cellular automata and cooperative phenomena, Kluwer, Dordrecht, 1993

[5] Wolfram S., “Cellular automata in condensed matter physics”, Scaling phenomena in disordered systems, eds. R. Pynn, A. Skjeltorp, Plenum Press, N. Y., 1985

[6] Park J. K., Steiglitz K., Thurston W. P., “Soliton like behavior in automata”, Physica D, 19 (1986), 423–432 | DOI | MR | Zbl

[7] Papatheodorou T. S., Ablowitz M. J., Saridakis Y. G., “A rule for fast computation and analysis of soliton automata”, Stud. Appl. Math., 79 (1988), 173–184 | MR | Zbl

[8] Papatheodorou T. S., Fokas A. S., “Evolution theory, periodic particles, and solitons in cellular automata”, Stud. Appl. Math., 80 (1989), 165–182 | MR | Zbl

[9] Fokas A. S., Papadopoulou E. P., Saridakis Y. G., Ablowitz M. J., “Interaction of simple particles in soliton cellular automata”, Stud. Appl. Math., 81 (1989), 153–180 | MR | Zbl

[10] Fokas A. S., Papadopoulou E. P., Saridakis Y. G., “Coherent structures in cellular automata”, Phys. Lett. A, 147 (1990), 369–379 | DOI | MR

[11] Takahashi D., Satsuma J., “A soliton cellular automaton”, J. Phys. Soc. Japan, 59 (1990), 3514–3519 | DOI | MR

[12] Ablowitz M. J., Kaiser J. M., Takhtajan L. A., “Class of stable multistate time-reversible cellular automata with reach particle content”, Phys. Rev. A, 44 (1990), 6909–6912 | DOI

[13] Bruschi M., Santini P. M., Ragnisco O., “Integrable cellular automata”, Phys. Lett. A, 169 (1992), 151–160 | DOI | MR

[14] Bobenko A., Bordemann M., Gunn C., Pinkall U., “On two integrable cellular automata”, Communs Math. Phys., 158 (1993), 127–134 | DOI | MR | Zbl

[15] Takhtajan L. A., “Integrable cellular automata and AKNS hierarchy”, Symmetries and integrability of difference equations, CRM Proc. Lect. Notes, 9, eds. D. Levi, L. Vinet, P. Winternitz, Amer. Math. Soc., Providence, R. I., 1996, 371–375 | MR | Zbl

[16] Takahashi D., Matsukidaira J., “On discrete soliton equations related to cellular automata”, Phys. Lett. A, 209 (1995), 184–188 | DOI | MR | Zbl

[17] Ablovits M., Sigur Kh., Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR

[18] Kac M., van Moerbeke P., “A complete solution of the periodic Toda problem”, Proc. Nat. Acad. Sci. USA, 72 (1974), 2879–2880 | DOI | MR

[19] Manakov S. V., “O polnoi integriruemosti i stokhastizatsii v diskretnykh dinamicheskikh sistemakh”, ZhETF, 67 (1974), 543–555 | MR

[20] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: Metod obratnoi zadachi rasseyaniya, Nauka, M., 1980 | MR

[21] Calogero F., Degasperis A., Spectral transform and solitons, North-Holland, Amsterdam, 1982 | MR | Zbl

[22] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl