Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_1999_225_a2, author = {A. A. Akhmetshin and Yu. S. Vol'vovskii and I. M. Krichever}, title = {Discrete {Analogs} of the {Darboux--Egorov} {Metrics}}, journal = {Informatics and Automation}, pages = {21--45}, publisher = {mathdoc}, volume = {225}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a2/} }
TY - JOUR AU - A. A. Akhmetshin AU - Yu. S. Vol'vovskii AU - I. M. Krichever TI - Discrete Analogs of the Darboux--Egorov Metrics JO - Informatics and Automation PY - 1999 SP - 21 EP - 45 VL - 225 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a2/ LA - ru ID - TRSPY_1999_225_a2 ER -
A. A. Akhmetshin; Yu. S. Vol'vovskii; I. M. Krichever. Discrete Analogs of the Darboux--Egorov Metrics. Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 21-45. http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a2/
[1] Bobenko A., Pinkall U., “Discretization of surfaces and integrable systems”, Discrete integrable geometry and physics, eds. A. Bobenko, R. Seiler, Oxford Univ. Press, Oxford, 1999 ; Preprint Sfb 296, Berlin, 1997 | MR | Zbl
[2] Doliwa A., Santini P. M., “Multidimensional quadrilateral lattices are integrable”, Phys. Lett. A, 233 (1997), 365–372 | DOI | MR | Zbl
[3] Doliwa A., “Geometric discretization of the Toda system”, Phys. Lett. A, 234 (1997), 187–192 | DOI | MR | Zbl
[4] Dubrovin B. A., Novikov S. P., “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, DAN SSSR, 270:4 (1983), 781–785 | MR | Zbl
[5] Dubrovin B. A., Novikov S. P., “Gidrodinamika slabo deformirovannykh solitonnykh reshetok: Differentsialnaya geometriya i gamiltonova teoriya”, UMN, 44:6 (1989), 29–98 | MR | Zbl
[6] Tsarev S. P., “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR. Ser. mat., 54:5 (1990), 1048–1068 | MR | Zbl
[7] Dubrovin B., “Integrable systems in topological field theory”, Nucl. Phys. B, 379:3 (1992), 627–689 | DOI | MR
[8] Dijkgraaf R., Verlinde E., Verlinde H., “Topological strings in $d1$”, Nucl. Phys. B, 352 (1991), 59–86 | DOI | MR
[9] Dijkgraaf R., Verlinde E., Verlinde H., “Notes on topological string theory and 2D quantum gravity”, String theory and quantum gravity (Proc. Trieste Spring School, 1990), ed. M. Green, World Sci., Singapore, 1991 | MR | Zbl
[10] Dijkgraaf R., Witten E., “Mean field theory, topological field theory, and multi-matrix models”, Nucl. Phys. B, 342 (1990), 486–522 | DOI | MR
[11] Darboux G., Leçons sur le systems ortogonaux et les coordones curvilignes, Paris, 1910
[12] Zakharov V., “Description of the $n$-ortogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type, I: Integration of the Lamé equations”, Duke Math. J., 94:1 (1998), 103–139 | DOI | MR | Zbl
[13] Zakharov V. E., Manakov S. V., “O reduktsiyakh v sistemakh, integriruemykh metodom obratnoi zadachi rasseyaniya”, Dokl. RAN, 360:3 (1998), 324–327 | MR | Zbl
[14] Krichever I. M., “Algebro-geometricheskie $n$-ortogonalnye krivolineinye sistemy koordinat i resheniya uravnenii assotsiativnosti”, Funktsion. analiz i ego pril., 31:1 (1997), 32–50 | MR | Zbl
[15] Cieśliński J., Doliwa A., Santini P. M., “The integrable discrete analogues of orthogonal coordinate systems are multi-dimensional circular lattices”, Phys. Lett. A, 235 (1997), 480–488 | DOI | MR | Zbl
[16] Santini P. M., Doliwa A., Discrete geometry and integrability: The quadrilateral lattice and its reductions, Preprint, Sabaudia, may 1998