Discrete Analogs of the Darboux--Egorov Metrics
Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 21-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

A discrete analog of the Darboux–Egorov metrics is constructed and the geometry of the corresponding lattices in a Euclidean space is shown to be described by the set of functions $h_i^{\pm}(u)$, $u\in\mathbb Z^n$. A discrete analog of the Lamé equations is determined, and it is shown that these equations are necessary and sufficient for the solutions to this analog to be the rotation coefficients of the Darboux–Egorov lattice up to a gauge transformation. A scheme for the construction of explicit solutions to the discrete Lamé equations in terms of the Riemann $\theta$-functions is presented.
@article{TRSPY_1999_225_a2,
     author = {A. A. Akhmetshin and Yu. S. Vol'vovskii and I. M. Krichever},
     title = {Discrete {Analogs} of the {Darboux--Egorov} {Metrics}},
     journal = {Informatics and Automation},
     pages = {21--45},
     publisher = {mathdoc},
     volume = {225},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a2/}
}
TY  - JOUR
AU  - A. A. Akhmetshin
AU  - Yu. S. Vol'vovskii
AU  - I. M. Krichever
TI  - Discrete Analogs of the Darboux--Egorov Metrics
JO  - Informatics and Automation
PY  - 1999
SP  - 21
EP  - 45
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a2/
LA  - ru
ID  - TRSPY_1999_225_a2
ER  - 
%0 Journal Article
%A A. A. Akhmetshin
%A Yu. S. Vol'vovskii
%A I. M. Krichever
%T Discrete Analogs of the Darboux--Egorov Metrics
%J Informatics and Automation
%D 1999
%P 21-45
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a2/
%G ru
%F TRSPY_1999_225_a2
A. A. Akhmetshin; Yu. S. Vol'vovskii; I. M. Krichever. Discrete Analogs of the Darboux--Egorov Metrics. Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 21-45. http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a2/

[1] Bobenko A., Pinkall U., “Discretization of surfaces and integrable systems”, Discrete integrable geometry and physics, eds. A. Bobenko, R. Seiler, Oxford Univ. Press, Oxford, 1999 ; Preprint Sfb 296, Berlin, 1997 | MR | Zbl

[2] Doliwa A., Santini P. M., “Multidimensional quadrilateral lattices are integrable”, Phys. Lett. A, 233 (1997), 365–372 | DOI | MR | Zbl

[3] Doliwa A., “Geometric discretization of the Toda system”, Phys. Lett. A, 234 (1997), 187–192 | DOI | MR | Zbl

[4] Dubrovin B. A., Novikov S. P., “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, DAN SSSR, 270:4 (1983), 781–785 | MR | Zbl

[5] Dubrovin B. A., Novikov S. P., “Gidrodinamika slabo deformirovannykh solitonnykh reshetok: Differentsialnaya geometriya i gamiltonova teoriya”, UMN, 44:6 (1989), 29–98 | MR | Zbl

[6] Tsarev S. P., “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR. Ser. mat., 54:5 (1990), 1048–1068 | MR | Zbl

[7] Dubrovin B., “Integrable systems in topological field theory”, Nucl. Phys. B, 379:3 (1992), 627–689 | DOI | MR

[8] Dijkgraaf R., Verlinde E., Verlinde H., “Topological strings in $d1$”, Nucl. Phys. B, 352 (1991), 59–86 | DOI | MR

[9] Dijkgraaf R., Verlinde E., Verlinde H., “Notes on topological string theory and 2D quantum gravity”, String theory and quantum gravity (Proc. Trieste Spring School, 1990), ed. M. Green, World Sci., Singapore, 1991 | MR | Zbl

[10] Dijkgraaf R., Witten E., “Mean field theory, topological field theory, and multi-matrix models”, Nucl. Phys. B, 342 (1990), 486–522 | DOI | MR

[11] Darboux G., Leçons sur le systems ortogonaux et les coordones curvilignes, Paris, 1910

[12] Zakharov V., “Description of the $n$-ortogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type, I: Integration of the Lamé equations”, Duke Math. J., 94:1 (1998), 103–139 | DOI | MR | Zbl

[13] Zakharov V. E., Manakov S. V., “O reduktsiyakh v sistemakh, integriruemykh metodom obratnoi zadachi rasseyaniya”, Dokl. RAN, 360:3 (1998), 324–327 | MR | Zbl

[14] Krichever I. M., “Algebro-geometricheskie $n$-ortogonalnye krivolineinye sistemy koordinat i resheniya uravnenii assotsiativnosti”, Funktsion. analiz i ego pril., 31:1 (1997), 32–50 | MR | Zbl

[15] Cieśliński J., Doliwa A., Santini P. M., “The integrable discrete analogues of orthogonal coordinate systems are multi-dimensional circular lattices”, Phys. Lett. A, 235 (1997), 480–488 | DOI | MR | Zbl

[16] Santini P. M., Doliwa A., Discrete geometry and integrability: The quadrilateral lattice and its reductions, Preprint, Sabaudia, may 1998