Compatible Poisson Structures of Hydrodynamic Type and Associativity Equations
Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 284-300.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TRSPY_1999_225_a18,
     author = {O. I. Mokhov},
     title = {Compatible {Poisson} {Structures} of {Hydrodynamic} {Type} and {Associativity} {Equations}},
     journal = {Informatics and Automation},
     pages = {284--300},
     publisher = {mathdoc},
     volume = {225},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a18/}
}
TY  - JOUR
AU  - O. I. Mokhov
TI  - Compatible Poisson Structures of Hydrodynamic Type and Associativity Equations
JO  - Informatics and Automation
PY  - 1999
SP  - 284
EP  - 300
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a18/
LA  - ru
ID  - TRSPY_1999_225_a18
ER  - 
%0 Journal Article
%A O. I. Mokhov
%T Compatible Poisson Structures of Hydrodynamic Type and Associativity Equations
%J Informatics and Automation
%D 1999
%P 284-300
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a18/
%G ru
%F TRSPY_1999_225_a18
O. I. Mokhov. Compatible Poisson Structures of Hydrodynamic Type and Associativity Equations. Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 284-300. http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a18/

[1] Dubrovin B. A., Novikov S. P., “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, DAN SSSR, 270:4 (1983), 781–785 | MR | Zbl

[2] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977 | MR

[3] Dubrovin B. A., Novikov S. P., “Gidrodinamika slabo deformirovannykh solitonnykh reshetok. Differentsialnaya geometriya i gamiltonova teoriya”, UMN, 44:6 (1989), 29–98 | MR | Zbl

[4] Dubrovin B. A., Novikov S. P., Hydrodynamics of soliton lattices, Soviet Scientific Reviews, Section C: Mathematical Physics Reviews, 9, Harwood Academic Publishers GmbH, Yverdon, 1993, 136 pp. | MR

[5] Maltsev A. Ya., The conservation of the Hamiltonian structures in Whitham's method of averaging, Preprint, 1996; ; А. Я. Мальцев, “Наследование гамильтоновых структур в методе усреднения Уизема”, Изв. РАН. Сер. матем., 63:6 (1999), 117–146 arXiv: solv-int/9611008 | MR | Zbl

[6] Maltsev A. Ya., “Usrednenie lokalnykh teoretiko-polevykh skobok Puassona”, UMN, 52:2 (1997), 177–178 | MR

[7] Novikov S. P., Maltsev A. Ya., “Liuvilleva forma usrednennykh skobok Puassona”, UMN, 48:1 (1993), 155–156 | MR | Zbl

[8] Maltsev A. Ya., Pavlov M. V., “O metode usredneniya Uizema”, Funktsion. analiz i ego pril., 29:1 (1995), 7–24 | MR | Zbl

[9] Tsarev S. P., “O skobkakh Puassona i odnomernykh gamiltonovykh sistemakh gidrodinamicheskogo tipa”, DAN SSSR, 282:3 (1985), 534–537 | MR | Zbl

[10] Tsarev S. P., “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR. Ser. mat., 54:5 (1990), 1048–1068 | MR | Zbl

[11] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl

[12] Gelfand I. M., Dorfman I. Ya., “Gamiltonovy operatory i svyazannye s nimi algebraicheskie struktury”, Funktsion. analiz i ego pril., 13:4 (1979), 13–30 | MR

[13] Fuchssteiner B., “Application of hereditary symmetries to nonlinear evolution equations”, Nonlin. Anal. Th., Meth. and Appl., 3 (1979), 849–862 | DOI | MR | Zbl

[14] Fokas A. S., Fuchssteiner B., “On the structure of symplectic operators and hereditary symmetries”, Lett. Nuovo Cim., 28:8 (1980), 299–303 | DOI | MR

[15] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[16] Dorfman I., Dirac structures and integrability of nonlinear evolution equations, J. Wiley Sons, Chichester (England), 1993 | MR

[17] Mokhov O. I., “Lokalnye skobki Puassona tretego poryadka”, UMN, 40:5 (1985), 257–258 | MR | Zbl

[18] Mokhov O. I., “Gamiltonovy differentsialnye operatory i kontaktnaya geometriya”, Funktsion. analiz i ego pril., 21:3 (1987), 53–60 | MR | Zbl

[19] Cooke D. B., “Classification results and the Darboux theorem for low-order Hamiltonian operators”, J. Math. Phys., 32:1 (1991), 109–119 | DOI | MR | Zbl

[20] Cooke D. B., “Compatibility conditions for Hamiltonian pairs”, J. Math. Phys., 32:11 (1991), 3071–3076 | DOI | MR | Zbl

[21] Gardner C. S., “Korteweg–de Vries equation and generalizations. IV: The Korteweg–de Vries equation as a Hamiltonian system”, J. Math. Phys., 12:8 (1971), 1548–1551 | DOI | MR | Zbl

[22] Zakharov V. E., Faddeev L. D., “Uravnenie Kortevega–de Friza – vpolne integriruemaya gamiltonova sistema”, Funktsion. analiz i ego pril., 5:4 (1971), 18–27 | MR | Zbl

[23] Nutku Y., “On a new class of completely integrable nonlinear wave equations. II: Multi-Hamiltonian structure”, J. Math. Phys., 28:11 (1987), 2579–2585 | DOI | MR | Zbl

[24] Olver P., Nutku Y., “Hamiltonian structures for systems of hyperbolic conservation laws”, J. Math. Phys., 29:7 (1988), 1610–1619 | DOI | MR | Zbl

[25] Arik M., Neyzi F., Nutku Y., Olver P. J., Verosky J. M., “Multi-Hamiltonian structure of the Born–Infeld equation”, J. Math. Phys., 30:6 (1989), 1338–1344 | DOI | MR | Zbl

[26] Neyzi F., “Diagonalization and Hamiltonian structures of hyperbolic systems”, J. Math. Phys., 30:8 (1989), 1695–1698 | DOI | MR | Zbl

[27] Gümral H., Nutku Y., “Multi-Hamiltonian structure of equations of hydrodynamic type”, J. Math. Phys., 31:11 (1990), 2606–2611 | DOI | MR | Zbl

[28] Ferapontov E. V., “Gamiltonovy sistemy gidrodinamicheskogo tipa i ikh realizatsiya na giperpoverkhnostyakh psevdoevklidova prostranstva”, Itogi nauki i tekhniki. Problemy geometrii, 22, VINITI, M., 1990, 59–96 | MR

[29] Ferapontov E. V., Pavlov M. V., “Quasiclassical limit of coupled KdV equations. Riemann invariants and multi-Hamiltonian structure”, Physica D, 52 (1991), 211–219 | DOI | MR | Zbl

[30] Dubrovin B., Differential geometry of the space of orbits of a Coxeter group, Preprint SISSA-29/93/FM, 1993 ; arXiv: hep-th/9303152 | MR

[31] Dubrovin B., “Geometry of 2D topological field theories”, Lect. Notes Math., 1620, 1996, 120–348 ; arXiv: hep-th/9407018 | MR | Zbl

[32] Dubrovin B., “Integrable systems in topological field theory”, Nucl. Phys. B, 379 (1992), 627–689 | DOI | MR

[33] Dubrovin B., Flat pencils of metrics and Frobenius manifolds, Preprint SISSA-25/98/FM, 1998 ; arXiv: math.DG/9803106 | MR

[34] Ferapontov E. V., “Nonlocal Hamiltonian operators of hydrodynamic type: differential geometry and applications”, Topics in topology and mathematical physics, ed. S. P. Novikov, Amer. Math. Soc., Providence, R.I., 1995, 33–58 | MR | Zbl

[35] Mokhov O. I., “O soglasovannykh puassonovykh strukturakh gidrodinamicheskogo tipa”, UMN, 52:6 (1997), 171–172 | MR

[36] Mokhov O. I., “O soglasovannykh potentsialnykh deformatsiyakh frobeniusovykh algebr i uravneniyakh assotsiativnosti”, UMN, 53:2 (1998), 153–154 | MR | Zbl

[37] Tsarev S. P., “O liuvillevykh skobkakh Puassona i odnomernykh gamiltonovykh sistemakh gidrodinamicheskogo tipa, voznikayuschikh v teorii usredneniya Bogolyubova–Uizema”, UMN, 39:6 (1984), 209–210 | MR | Zbl

[38] Witten E., “On the structure of topological phase of two-dimensional gravity”, Nucl. Phys. B, 340 (1990), 281–332 | DOI | MR

[39] Witten E., “Two-dimensional gravity and intersection theory on moduli space”, Surveys in differential geometry (Cambridge, MA, 1990), Lehigh Univ., Bethlehem, PA, 1991, 243–310 | MR

[40] Dijkgraaf R., Verlinde H., Verlinde E., “Topological strings in $d1$”, Nucl. Phys. B, 352 (1991), 59–86 | DOI | MR

[41] Mokhov O. I., “Symplectic and Poisson geometry on loop spaces of manifolds and nonlinear equations”, Topics in topology and mathematical physics, ed. S. P. Novikov, Amer. Math. Soc., Providence, R.I., 1995, 121–151 ; arXiv: hep-th/9503076 | MR | Zbl

[42] Mokhov O. I., “Poisson and symplectic geometry on loop spaces of smooth manifolds”, Geometry from the pacific Rim (Singapore, 1994), de Gruyter, Berlin, 1997, 285–309 | MR | Zbl

[43] Mokhov O. I., Ferapontov E. V., “Uravneniya assotsiativnosti dvumernoi topologicheskoi teorii polya kak integriruemye gamiltonovy nediagonalizuemye sistemy gidrodinamicheskogo tipa”, Funktsion. analiz i ego pril., 30:3 (1996), 62–72 | MR | Zbl

[44] Ferapontov E. V., Mokhov O. I., “The equations of the associativity as hydrodynamic type systems: Hamiltonian representation and integrability”, Nonlinear physics: theory and experiment (Lecce, 1995), World Sci. Publ., River Edge, NJ, 1996, 104–115 | MR | Zbl

[45] Ferapontov E. V., Mokhov O. I., “On the Hamiltonian representation of the associativity equations”, Algebraic aspects of integrable systems: In memory of Irene Dorfman, eds. A. S. Fokas, I. M. Gelfand, Birkhäuser, Boston, 1996, 75–91 | MR

[46] Ferapontov E. V., Galvão C. A. P., Mokhov O. I., Nutku Y., “Bi-Hamiltonian structure of equations of associativity in 2D topological field theory”, Communs Math. Phys., 186 (1997), 649–669 | DOI | MR | Zbl

[47] Mokhov O. I., Simplekticheskie i puassonovy struktury na prostranstvakh petel gladkikh mnogoobrazii i integriruemye sistemy, Dokt. dis., Mat. in-t im. V. A. Steklova RAN, M., 1996 | Zbl

[48] Mokhov O. I., “Simplekticheskie i puassonovy struktury na prostranstvakh petel gladkikh mnogoobrazii i integriruemye sistemy”, UMN, 53:3 (1998), 85–192 | MR | Zbl