On Almost Representations of Groups $\pi\times{\mathbf Z}$
Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 257-263.

Voir la notice de l'article provenant de la source Math-Net.Ru

Various generalizations of group representations (like almost and asymptotic ones) are drawing attention due to their applications to classification theory of $C^*$-algebras and to the Novikov conjecture on higher signatures and the Baum–Connes conjecture. We study here almost representations of discrete groups $\pi\times\mathbf Z$ which can be viewed as finite-dimensional analogs of Fredholm representations. We give a construction of such almost representations and show that for some class of discrete groups (intermediate between commutative and nilpotent groups) these almost representations provide enough vector bundles over the classifying spaces $B\pi\times S^1$. In particular it gives a new proof of the well-known validity of the Novikov conjecture for these groups.
@article{TRSPY_1999_225_a15,
     author = {V. M. Manuilov},
     title = {On {Almost} {Representations} of {Groups} $\pi\times{\mathbf Z}$},
     journal = {Informatics and Automation},
     pages = {257--263},
     publisher = {mathdoc},
     volume = {225},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a15/}
}
TY  - JOUR
AU  - V. M. Manuilov
TI  - On Almost Representations of Groups $\pi\times{\mathbf Z}$
JO  - Informatics and Automation
PY  - 1999
SP  - 257
EP  - 263
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a15/
LA  - ru
ID  - TRSPY_1999_225_a15
ER  - 
%0 Journal Article
%A V. M. Manuilov
%T On Almost Representations of Groups $\pi\times{\mathbf Z}$
%J Informatics and Automation
%D 1999
%P 257-263
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a15/
%G ru
%F TRSPY_1999_225_a15
V. M. Manuilov. On Almost Representations of Groups $\pi\times{\mathbf Z}$. Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 257-263. http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a15/

[1] Connes A., Higson N., “Deformations, morphismes asymptotiques et $K$-theorie bivariante”, C. R. Acad. sci. Paris, sér. 1, 311 (1990), 101–106 | MR | Zbl

[2] Loring T. A., “$C^*$-algebras generated by stable relations”, J. Funct. Anal., 112 (1993), 159–201 | DOI | MR

[3] Maltsev A. I., “Ob odnom klasse odnorodnykh prostranstv”, Izv. AN SSSR. Ser. mat., 13:1 (1949), 9–32

[4] Manuilov V. M., Almost commutativity implies asymptotic commutativity, Preprint No 14, Copenhagen Univ. Prepr. Ser., 1997 | MR

[5] Mischenko A. S., “O fredgolmovykh predstavleniyakh diskretnykh grupp”, Funktsion. anal. i ego pril., 9:2 (1975), 36–41 | MR

[6] Mishchenko A. S., Mohammad N., Asymptotical representations of discrete groups, Preprint IC/95/260, Center Theor. Phys., Miramare–Trieste, 1995