Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_1999_225_a14, author = {S. B. Kuksin}, title = {Stochastic {Nonlinear} {Schr\"odinger} {Equation.} {1.~A~priori} {Estimates}}, journal = {Informatics and Automation}, pages = {232--256}, publisher = {mathdoc}, volume = {225}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a14/} }
S. B. Kuksin. Stochastic Nonlinear Schr\"odinger Equation. 1.~A~priori Estimates. Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 232-256. http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a14/
[1] Adler R. J., The geometry of random fields, J. Wiley and Sons, N. Y., 1981 | MR | Zbl
[2] Markov processes, Springer-Verl., Berlin, 1965 | MR | Zbl
[3] Krylov N. V., Introduction to the theory of diffusion processes, Transl. Math. Monogr., 142, Amer. Math. Soc., Providence, R.I., 1994 | MR
[4] Kuksin S. B., “On turbulence in nonlinear Schrödinger equation”, Geom. and Funct. Anal., 7 (1997), 783–822 | DOI | MR | Zbl
[5] Kuksin S. B., “Spectral properties of solutions for nonlinear PDEs in the turbulent regime”, Geom. and Funct. Anal., 9 (1999), 141–184 | DOI | MR | Zbl
[6] Kuksin S. B., Nadirashvili N. S., Piatnitski A. L., Stochastic maximum principle and related problems, Preprint, 1999
[7] Krylov N. V., “On $L_p$-theory of stochastic partial differential equations in the whole space”, SIAM J. Math. Anal., 27 (1996), 313–340 | DOI | MR | Zbl
[8] Landis E. M., Second order equations of elliptic and parabolic type, Amer. Math. Soc., Transl. Math. Monogr., 171, Providence, R.I., 1997 | MR
[9] Ladyzhenskaya O. A., Solonnikov V. A., Uralceva N. N., Linear and quasilinear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, R.I., 1968 | Zbl
[10] Maslowski B., Seidler J., “Ergodic properties of recurrent solutions of stochastic evolution equations”, Osaka J. Math., 31 (1994), 965–1003 | MR | Zbl
[11] Da Prato G., Zabczyk J., Stochastic equations in infinite dimensions, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl
[12] Stochastic evolution systems, Kluwer, Dordrecht, 1990 | MR | Zbl