Polyhedral and Dihedral Caustics in the~$\mathbb R^3$
Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 195-201

Voir la notice de l'article provenant de la source Math-Net.Ru

The role of the symmetries in the topology of sets of Lagrangian singularities is studied in a simple physical model: the envelope of the rays emanating from a convex wave front invariant under the action of discrete subgroups of $O(3)$. New point-singularities of integer index are found. They are located at the vertices of the polyhedron or of its dual. For the dihedral subgroups, we have found a remarkable property of stability of umbilics. These properties result from the interplay between the symmetries of the singularities and the topology of the wave front. An application to fine-particle magnetic systems is given.
@article{TRSPY_1999_225_a12,
     author = {A. Joets and M. I. Monastyrskii and R. Ribotta},
     title = {Polyhedral and {Dihedral} {Caustics} in the~$\mathbb R^3$},
     journal = {Informatics and Automation},
     pages = {195--201},
     publisher = {mathdoc},
     volume = {225},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a12/}
}
TY  - JOUR
AU  - A. Joets
AU  - M. I. Monastyrskii
AU  - R. Ribotta
TI  - Polyhedral and Dihedral Caustics in the~$\mathbb R^3$
JO  - Informatics and Automation
PY  - 1999
SP  - 195
EP  - 201
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a12/
LA  - en
ID  - TRSPY_1999_225_a12
ER  - 
%0 Journal Article
%A A. Joets
%A M. I. Monastyrskii
%A R. Ribotta
%T Polyhedral and Dihedral Caustics in the~$\mathbb R^3$
%J Informatics and Automation
%D 1999
%P 195-201
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a12/
%G en
%F TRSPY_1999_225_a12
A. Joets; M. I. Monastyrskii; R. Ribotta. Polyhedral and Dihedral Caustics in the~$\mathbb R^3$. Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 195-201. http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a12/