Polyhedral and Dihedral Caustics in the~$\mathbb R^3$
Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 195-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

The role of the symmetries in the topology of sets of Lagrangian singularities is studied in a simple physical model: the envelope of the rays emanating from a convex wave front invariant under the action of discrete subgroups of $O(3)$. New point-singularities of integer index are found. They are located at the vertices of the polyhedron or of its dual. For the dihedral subgroups, we have found a remarkable property of stability of umbilics. These properties result from the interplay between the symmetries of the singularities and the topology of the wave front. An application to fine-particle magnetic systems is given.
@article{TRSPY_1999_225_a12,
     author = {A. Joets and M. I. Monastyrskii and R. Ribotta},
     title = {Polyhedral and {Dihedral} {Caustics} in the~$\mathbb R^3$},
     journal = {Informatics and Automation},
     pages = {195--201},
     publisher = {mathdoc},
     volume = {225},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a12/}
}
TY  - JOUR
AU  - A. Joets
AU  - M. I. Monastyrskii
AU  - R. Ribotta
TI  - Polyhedral and Dihedral Caustics in the~$\mathbb R^3$
JO  - Informatics and Automation
PY  - 1999
SP  - 195
EP  - 201
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a12/
LA  - en
ID  - TRSPY_1999_225_a12
ER  - 
%0 Journal Article
%A A. Joets
%A M. I. Monastyrskii
%A R. Ribotta
%T Polyhedral and Dihedral Caustics in the~$\mathbb R^3$
%J Informatics and Automation
%D 1999
%P 195-201
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a12/
%G en
%F TRSPY_1999_225_a12
A. Joets; M. I. Monastyrskii; R. Ribotta. Polyhedral and Dihedral Caustics in the~$\mathbb R^3$. Informatics and Automation, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 195-201. http://geodesic.mathdoc.fr/item/TRSPY_1999_225_a12/

[1] Poston T., Stewart I., Catastrophe theory and its applications, Fearon–Pitman, London etc., 1978 | MR

[2] Joets A., Ribotta R., “Caustics and symmetries in optical imaging. The example of convective flow visualization”, J. phys. (Fr.), ser. 1, 4 (1994), 1013–1026 | DOI

[3] Arnold V. I., Singularities of caustics and wave fronts, Math. and its Appl., 62, Kluwer Acad., Dordrecht, 1990 | MR

[4] Chekanov Yu. V., “Kaustiki geometricheskoi optiki”, Funktsion. analiz i ego pril., 20:3 (1986), 66–69 | MR | Zbl

[5] Joets A., Ribotta R., “Experimental determination of a topological invariant in a pattern of optical singularities”, Phys. Rev. Lett., 77 (1996), 1755–1758 | DOI

[6] Joets A., Monastyrsky M., Ribotta R., “Ensembles of singularities generated by surfaces with polyhedral symmetry”, Phys. Rev. Lett., 81 (1998), 1547–1550 | DOI | MR

[7] Thiaville A., Coherent rotation of magnetization in three dimensions: a geometrical approach, Preprint, 1998

[8] Kazarian M., “Umbilical characteristic number of Lagrangian mappings of 3-dimensional pseudooptical manifolds”, Singularities and differential equations, Banach Center Publ., 33, eds. S. Janeczko, W. Zajaczkowski, B. Ziemian, Pol. Acad. sci., Warszaw, 1996, 161–170 | MR | Zbl

[9] Thom R., “Les singularités des applications différentiables”, Ann. Inst. Fourier, 6 (1956), 43–87 | MR | Zbl

[10] Joets A., Ribotta R., “Structure of caustics studied using the global theory of singularities”, Europhys. Lett., 29 (1995), 593–598 | DOI

[11] Janeczko S., Roberts R. M., “Classification of symmetric caustic. I: Symplectic equivalence”, Singularity theory and its applications, II, Lect. Notes Math., 1463, eds. R. M. Roberts, I. Stewart, Springer-Verl., Berlin etc., 1991, 193–219 | MR

[12] Landau L. D., Lifshits E. M., Elektrodinamika sploshnykh sred, Nauka, M., 1969

[13] Ericksen J. L., “Some phase transition in crystals”, Arch. Ration. Mech. Anal., 73 (1980), 99–124 | DOI | MR | Zbl

[14] Wolfe J. P., “Ballistic heat pulses in crystals”, Phys. Today, 33:12 (1980), 44–58 | DOI

[15] Delos J. B., “Catastrophes and stable caustics in bound states of Hamiltonian systems”, J. Chem. Phys., 86 (1987), 425–439 | DOI | MR