Optimal Synthesis Containing Successively Inserted Chattering Bundles
Informatics and Automation, Algebra. Topology. Differential equations and their applications, Tome 224 (1999), pp. 152-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TRSPY_1999_224_a9,
     author = {M. I. Zelikin},
     title = {Optimal {Synthesis} {Containing} {Successively} {Inserted} {Chattering} {Bundles}},
     journal = {Informatics and Automation},
     pages = {152--164},
     publisher = {mathdoc},
     volume = {224},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_224_a9/}
}
TY  - JOUR
AU  - M. I. Zelikin
TI  - Optimal Synthesis Containing Successively Inserted Chattering Bundles
JO  - Informatics and Automation
PY  - 1999
SP  - 152
EP  - 164
VL  - 224
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_224_a9/
LA  - ru
ID  - TRSPY_1999_224_a9
ER  - 
%0 Journal Article
%A M. I. Zelikin
%T Optimal Synthesis Containing Successively Inserted Chattering Bundles
%J Informatics and Automation
%D 1999
%P 152-164
%V 224
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_224_a9/
%G ru
%F TRSPY_1999_224_a9
M. I. Zelikin. Optimal Synthesis Containing Successively Inserted Chattering Bundles. Informatics and Automation, Algebra. Topology. Differential equations and their applications, Tome 224 (1999), pp. 152-164. http://geodesic.mathdoc.fr/item/TRSPY_1999_224_a9/

[1] Fuller A. T., “Optimizatsiya releinykh sistem regulirovaniya po razlichnym kriteriyam kachestva”, Tr. 1-go kongr. IFAK (Moskva, 1960 g.), 2, M., 1961, 584–605

[2] Fuller A. T., “Constant-ratio trajectories in optimal control systems”, Intern. J. Contr., 41:1 (1993), 1–37 | DOI | MR

[3] Marchal C., “Chattering arcs and chattering controls”, J. Optim. Theory and Appl., 11:5 (1973), 441–448 | DOI | MR

[4] Brunovsky P., Mallet-Paret J., “Switchings of optimal controls and the equation $y^{(4)}+y^{\alpha}\mathrm{sgn}\,y=0$, $0\alpha1$”, Casopic Pest. Mat., 110:3 (1985), 302–313 | MR | Zbl

[5] Ryan E. P., Buckingham N. J., “Minimization of a quadratic cost functional for a class of single input bilinear control systems”, Intern. J. Contr., 42:1 (1985), 129–148 | DOI | MR | Zbl

[6] Zelikin M. I., Borisov V. F., “Rezhimy uchaschayuschikhsya pereklyuchenii v zadachakh optimalnogo upravleniya”, Tr. MIAN, 197, 1991, 85–166 | MR

[7] Zelikin M., Borisov V., Theory of chattering control with applications to cosmonautics, robotics, economics, and engineering, Birkhäuser, Boston, 1994 | MR | Zbl

[8] Kupka I., “The ubiquity of Fuller's phenomenon”, Nonlinear controllability and optimal control, Monogr. Text. Pure and Appl. Math., 133, ed. Sussman H., Dekker, N. Y., 1990, 313–350 | MR | Zbl

[9] Milyutin A. A., Ilyutovich A. E., Osmolovskii N. P., Chukanov S. V., Optimalnoe upravlenie v lineinykh sistemakh, Nauka, M., 1993 | MR | Zbl

[10] Zelikin M. I., “Neregulyarnost optimalnogo upravleniya v regulyarnykh ekstremalnykh zadachakh”, Fund. i prikl. matematika, 1:2 (1995), 399–408 | MR | Zbl

[11] Zelikina L. F., “Universalnye mnogoobraziya i teoremy o magistrali dlya nekotorogo klassa zadach optimalnogo upravleniya”, DAN SSSR, 224:1 (1975), 31–34 | MR | Zbl

[12] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961

[13] Kelley H. J., Kopp R. E., Moyer H. G., “Singular extremals”, Topics in optimization, ed. Leitmann G., Acad. Press, N. Y., 1967, 63–103 | MR

[14] Lewis R. M., “Definitions of order and junction conditions in singular optimal control problems”, SIAM J. Contr. and Optim., 18:1 (1980), 21–32 | DOI | MR | Zbl