Ramified Characters of Id\`ele Groups of One-Class Quadratic Fields
Informatics and Automation, Algebra. Topology. Differential equations and their applications, Tome 224 (1999), pp. 122-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

The necessary and sufficient conditions for the triviality of the ramified characters of the idèle group $A_d^\times $ of a one-class quadratic field $\mathbb Q(\sqrt d)$ on its multiplicative group $\mathbb Q^\times(\sqrt d)$ are established; i.e., the characters of the group $A_d^\times/\mathbb Q^\times(\sqrt d)$ are completely described.
@article{TRSPY_1999_224_a6,
     author = {V. S. Vladimirov},
     title = {Ramified {Characters} of {Id\`ele} {Groups} of {One-Class} {Quadratic} {Fields}},
     journal = {Informatics and Automation},
     pages = {122--129},
     publisher = {mathdoc},
     volume = {224},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_224_a6/}
}
TY  - JOUR
AU  - V. S. Vladimirov
TI  - Ramified Characters of Id\`ele Groups of One-Class Quadratic Fields
JO  - Informatics and Automation
PY  - 1999
SP  - 122
EP  - 129
VL  - 224
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_224_a6/
LA  - ru
ID  - TRSPY_1999_224_a6
ER  - 
%0 Journal Article
%A V. S. Vladimirov
%T Ramified Characters of Id\`ele Groups of One-Class Quadratic Fields
%J Informatics and Automation
%D 1999
%P 122-129
%V 224
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_224_a6/
%G ru
%F TRSPY_1999_224_a6
V. S. Vladimirov. Ramified Characters of Id\`ele Groups of One-Class Quadratic Fields. Informatics and Automation, Algebra. Topology. Differential equations and their applications, Tome 224 (1999), pp. 122-129. http://geodesic.mathdoc.fr/item/TRSPY_1999_224_a6/

[1] Vladimirov V. C., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[2] Khrennikov A., $p$-Adic valued distributions in mathematical physics, Kluver, Dordrecht etc., 1994 | MR | Zbl

[3] Hensel K., “Über eine neue Begründung der Theorie der algebraischen Zahlen”, Jahresber. Dtsch. Math.-Ver., 6:1 (1897), 83–88

[4] Schikhof W. H., Ultrametric calculus. An introduction to $p$-adic analysis, Cambridge Univ. Press, 1984 | MR | Zbl

[5] Pontryagin L. C., Nepreryvnye gruppy, Nauka, M., 1973 | MR | Zbl

[6] Vladimirov V. C., “Adelnye formuly dlya gamma- i beta-funktsii v polyakh algebraicheskikh chisel”, Dokl. RAN, 347:1 (1996), 11–15 | MR | Zbl

[7] Vladimirov V. S., “Adelic formulas for gamma- and beta-functions in algebraic number fields”, $p$-Adic functional analysis, Lect. Notes Pure and Appl. Math., 192, M. Dekker, N. Y., 1997, 383–395 | MR | Zbl

[8] Gelfand I. M., Graev M. M., Pyatetskii-Shapiro I. I., Teoriya predstavlenii i avtomorfnye funktsii, Nauka, M., 1966 | MR

[9] Veil A., Osnovy teorii chisel, Mir, M., 1972 | MR

[10] Vladimirov V. S., “Adelnye formuly Freinda–Vittena dlya amplitud Venetsiano i Virasoro–Shapiro”, UMN, 48:6 (1993), 3–38 | MR | Zbl

[11] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl

[12] Kochubei A. N., “Additive and multiplicative fractional differentiations over the field of $p$-adic numbers”, $p$-Adic functional analysis, Lect. Notes Pure and Appl. Math., 192, M. Dekker, N. Y., 1997, 275–280 | MR | Zbl

[13] Vladimirov V. C., “Obobschennye funktsii nad polem $p$-adicheskikh chisel”, UMN, 43:5 (1988), 17–53 | MR | Zbl

[14] Vladimirov V. C., “O spektre nekotorykh psevdodifferentsialnykh operatorov nad polem $p$-adicheskikh chisel”, Algebra i analiz, 2 (1990), 107–124 | MR

[15] Taibleson M. H., Fourier analysis on local fields, Princeton Univ. Press and Univ. Tokyo Press, 1975 | MR | Zbl